Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Biol ; 506: 85-94, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38040078

ABSTRACT

The gill slits of fishes develop from an iterative series of pharyngeal endodermal pouches that contact and fuse with surface ectoderm on either side of the embryonic head. We find in the skate (Leucoraja erinacea) that all gill slits form via a stereotypical sequence of epithelial interactions: 1) endodermal pouches approach overlying surface ectoderm, with 2) focal degradation of ectodermal basement membranes preceding endoderm-ectoderm contact; 3) endodermal pouches contact and intercalate with overlying surface ectoderm, and finally 4) perforation of a gill slit occurs by epithelial remodelling, without programmed cell death, at the site of endoderm-ectoderm intercalation. Skate embryos express Fgf8 and Fgf3 within developing pharyngeal epithelia during gill slit formation. When we inhibit Fgf signalling by treating skate embryos with the Fgf receptor inhibitor SU5402 we find that endodermal pouch formation, basement membrane degradation and endodermal-ectodermal intercalation are unaffected, but that epithelial remodelling and gill slit perforation fail to occur. These findings point to a role for Fgf signalling in epithelial remodelling during gill slit formation in the skate and, more broadly, to an ancestral role for Fgf signalling during pharyngeal pouch epithelial morphogenesis in vertebrate embryos.


Subject(s)
Ectoderm , Gills , Animals , Endoderm , Vertebrates , Morphogenesis
2.
J Virol ; 97(7): e0085821, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37338370

ABSTRACT

The 5' untranslated region (UTR) of the hepatitis C virus (HCV) genome forms RNA structures that regulate virus replication and translation. The region contains an internal ribosomal entry site (IRES) and a 5'-terminal region. Binding of the liver-specific microRNA (miRNA) miR-122 to two binding sites in the 5'-terminal region regulates viral replication, translation, and genome stability and is essential for efficient virus replication, but its precise mechanism of action is still unresolved. A current hypothesis is that miR-122 binding stimulates viral translation by facilitating the viral 5' UTR to form the translationally active HCV IRES RNA structure. While miR-122 is essential for detectable replication of wild-type HCV genomes in cell culture, several viral variants with 5' UTR mutations exhibit low-level replication in the absence of miR-122. We show that HCV mutants capable of replicating independently of miR-122 display an enhanced translation phenotype that correlates with their ability to replicate independently of miR-122. Further, we provide evidence that translation regulation is the major role for miR-122 and show that miR-122-independent HCV replication can be rescued to miR-122-dependent levels by the combined impacts of 5' UTR mutations that stimulate translation and by stabilizing the viral genome by knockdown of host exonucleases and phosphatases that degrade the genome. Finally, we show that HCV mutants capable of replicating independently of miR-122 also replicate independently of other microRNAs generated by the canonical miRNA synthesis pathway. Thus, we provide a model suggesting that translation stimulation and genome stabilization are the primary roles for miR-122 in promoting HCV. IMPORTANCE The unusual and essential role of miR-122 in promoting HCV propagation is incompletely understood. To better understand its role, we have analyzed HCV mutants capable of replicating independently of miR-122. Our data show that the ability of viruses to replicate independently of miR-122 correlates with enhanced virus translation but that genome stabilization is required to restore efficient HCV replication. This suggests that viruses must gain both abilities to escape the need for miR-122 and impacts the possibility that HCV can evolve to replicate outside the liver.


Subject(s)
Hepatitis C , MicroRNAs , Humans , Hepacivirus/physiology , 5' Untranslated Regions , MicroRNAs/genetics , MicroRNAs/metabolism , Internal Ribosome Entry Sites , RNA, Viral/genetics , RNA, Viral/metabolism , Virus Replication/physiology , Protein Biosynthesis
3.
Pathogens ; 11(9)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36145436

ABSTRACT

Despite the advancement in antiviral therapy, Hepatitis C remains a global health challenge and one of the leading causes of hepatitis related deaths worldwide. Hepatitis C virus, the causative agent, is a positive strand RNA virus that requires a liver specific microRNA called miR-122 for its replication. Unconventional to the canonical role of miRNAs in translation suppression by binding to 3'Untranslated Region (UTR) of messenger RNAs, miR-122 binds to two sites on the 5'UTR of viral genome and promotes viral propagation. In this review, we describe the unique relationship between the liver specific microRNA and HCV, the current knowledge on the mechanisms by which the virus uses miR-122 to promote the virus life cycle, and how miR-122 impacts viral tropism and pathogenesis. We will also discuss the use of anti-miR-122 therapy and its impact on viral evolution of miR-122-independent replication. This review further provides insight into how viruses manipulate host factors at the initial stage of infection to establish a successful infection.

4.
Sci Adv ; 7(52): eabk0161, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34936466

ABSTRACT

The function of the lung is closely coupled to its structural anatomy, which varies greatly across vertebrates. Although architecturally simple, a complex pattern of airflow is thought to be achieved in the lizard lung due to its cavernous central lumen and honeycomb-shaped wall. We find that the wall of the lizard lung is generated from an initially smooth epithelial sheet, which is pushed through holes in a hexagonal smooth muscle meshwork by forces from fluid pressure, similar to a stress ball. Combining transcriptomics with time-lapse imaging reveals that the hexagonal meshwork self-assembles in response to circumferential and axial stresses downstream of pressure. A computational model predicts the pressure-driven changes in epithelial topology, which we probe using optogenetically driven contraction of 3D-printed engineered muscle. These results reveal the physical principles used to sculpt the unusual architecture of the lizard lung, which could be exploited as a novel strategy to engineer tissues.

6.
Dev Dyn ; 249(11): 1318-1333, 2020 11.
Article in English | MEDLINE | ID: mdl-32510705

ABSTRACT

BACKGROUND: During development of the avian lung, the initially terminally branched epithelial tree later forms a continuous network of airways. This occurs via a large-scale epithelial fusion event, wherein airways that originate proximally collide with those that originate distally to form one continuous lumen. RESULTS: Here, we found that prior to fusion, the epithelium of the embryonic chicken lung undergoes a shape change to permit the initiation and extension of new branches which contain the cells that initiate contact. These changes in epithelial shape coincide with the differentiation of smooth muscle cells that wrap the airways. From these nascent epithelial branches, individual cells form cytoskeletal protrusions that extend toward and form a bridge with their target airway. Additional cells then join the fusion site, forming a bilayered epithelium. During this process, the basement membrane around the prefusion epithelium degrades and then reforms after fusion. The epithelial bilayer then undergoes apoptosis, clearing the path between the two lumens. CONCLUSIONS: The process of airway epithelial fusion in the developing chicken lung constitutes a novel mechanism for the generation of complex multicellular tubes and suggests a conserved role for smooth muscle in the shaping of airway epithelia.


Subject(s)
Basement Membrane/embryology , Chickens , Lung/embryology , Respiratory Mucosa/embryology , Animals , Basement Membrane/cytology , Chick Embryo , Lung/cytology , Respiratory Mucosa/cytology
7.
Metab Eng ; 39: 49-59, 2017 01.
Article in English | MEDLINE | ID: mdl-27815193

ABSTRACT

Methanol is an attractive substrate for biological production of chemicals and fuels. Engineering methylotrophic Escherichia coli as a platform organism for converting methanol to metabolites is desirable. Prior efforts to engineer methylotrophic E. coli were limited by methanol dehydrogenases (Mdhs) with unfavorable enzyme kinetics. We engineered E. coli to utilize methanol using a superior NAD-dependent Mdh from Bacillus stearothermophilus and ribulose monophosphate (RuMP) pathway enzymes from B. methanolicus. Using 13C-labeling, we demonstrate this E. coli strain converts methanol into biomass components. For example, the key TCA cycle intermediates, succinate and malate, exhibit labeling up to 39%, while the lower glycolytic intermediate, 3-phosphoglycerate, up to 53%. Multiple carbons are labeled for each compound, demonstrating a cycling RuMP pathway for methanol assimilation to support growth. By incorporating the pathway to synthesize the flavanone naringenin, we demonstrate the first example of in vivo conversion of methanol into a specialty chemical in E. coli.


Subject(s)
Alcohol Oxidoreductases/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Flavanones/biosynthesis , Metabolic Engineering/methods , Metabolic Networks and Pathways/physiology , Methanol/metabolism , Alcohol Oxidoreductases/metabolism , Biosynthetic Pathways/physiology , Escherichia coli Proteins/genetics , Flavanones/genetics , Genetic Enhancement/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...