Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
2.
Nat Commun ; 14(1): 5114, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37607904

ABSTRACT

M1 macrophages enter a glycolytic state when endogenous nitric oxide (NO) reprograms mitochondrial metabolism by limiting aconitase 2 and pyruvate dehydrogenase (PDH) activity. Here, we provide evidence that NO targets the PDH complex by using lipoate to generate nitroxyl (HNO). PDH E2-associated lipoate is modified in NO-rich macrophages while the PDH E3 enzyme, also known as dihydrolipoamide dehydrogenase (DLD), is irreversibly inhibited. Mechanistically, we show that lipoate facilitates NO-mediated production of HNO, which interacts with thiols forming irreversible modifications including sulfinamide. In addition, we reveal a macrophage signature of proteins with reduction-resistant modifications, including in DLD, and identify potential HNO targets. Consistently, DLD enzyme is modified in an HNO-dependent manner at Cys477 and Cys484, and molecular modeling and mutagenesis show these modifications impair the formation of DLD homodimers. In conclusion, our work demonstrates that HNO is produced physiologically. Moreover, the production of HNO is dependent on the lipoate-rich PDH complex facilitating irreversible modifications that are critical to NO-dependent metabolic rewiring.


Subject(s)
Nitric Oxide , Nitrogen Oxides , Macrophages , Pyruvate Dehydrogenase Complex , Oxidoreductases , Pyruvates
3.
Nat Metab ; 5(6): 981-995, 2023 06.
Article in English | MEDLINE | ID: mdl-37308721

ABSTRACT

Itaconate, the product of the decarboxylation of cis-aconitate, regulates numerous biological processes. We and others have revealed itaconate as a regulator of fatty acid ß-oxidation, generation of mitochondrial reactive oxygen species and the metabolic interplay between resident macrophages and tumors. In the present study, we show that itaconic acid is upregulated in human non-alcoholic steatohepatitis and a mouse model of non-alcoholic fatty liver disease. Male mice deficient in the gene responsible for itaconate production (immunoresponsive gene (Irg)-1) have exacerbated lipid accumulation in the liver, glucose and insulin intolerance and mesenteric fat deposition. Treatment of mice with the itaconate derivative, 4-octyl itaconate, reverses dyslipidemia associated with high-fat diet feeding. Mechanistically, itaconate treatment of primary hepatocytes reduces lipid accumulation and increases their oxidative phosphorylation in a manner dependent upon fatty acid oxidation. We propose a model whereby macrophage-derived itaconate acts in trans upon hepatocytes to modulate the liver's ability to metabolize fatty acids.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Male , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Lipid Metabolism , Hepatocytes/metabolism , Fatty Acids/metabolism , Lipids
4.
Int J Mol Sci ; 22(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209132

ABSTRACT

The metabolic requirements and functions of cancer and normal tissues are vastly different. Due to the rapid growth of cancer cells in the tumor microenvironment, distorted vasculature is commonly observed, which creates harsh environments that require rigorous and constantly evolving cellular adaption. A common hallmark of aggressive and therapeutically resistant tumors is hypoxia and hypoxia-induced stress markers. However, recent studies have identified alterations in a wide spectrum of metabolic pathways that dictate tumor behavior and response to therapy. Accordingly, it is becoming clear that metabolic processes are not uniform throughout the tumor microenvironment. Metabolic processes differ and are cell type specific where various factors promote metabolic heterogeneity within the tumor microenvironment. Furthermore, within the tumor, these metabolically distinct cell types can organize to form cellular neighborhoods that serve to establish a pro-tumor milieu in which distant and spatially distinct cellular neighborhoods can communicate via signaling metabolites from stroma, immune and tumor cells. In this review, we will discuss how biochemical interactions of various metabolic pathways influence cancer and immune microenvironments, as well as associated mechanisms that lead to good or poor clinical outcomes.


Subject(s)
Neoplasms/immunology , Nitric Oxide/immunology , Signal Transduction/immunology , Tumor Microenvironment/immunology , Animals , Humans , Neoplasms/pathology
6.
Metabolites ; 10(11)2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33114647

ABSTRACT

Nitric Oxide (NO) is a soluble endogenous gas with various biological functions like signaling, and working as an effector molecule or metabolic regulator. In response to inflammatory signals, immune myeloid cells, like macrophages, increase production of cytokines and NO, which is important for pathogen killing. Under these proinflammatory circumstances, called "M1", macrophages undergo a series of metabolic changes including rewiring of their tricarboxylic acid (TCA) cycle. Here, we review findings indicating that NO, through its interaction with heme and non-heme metal containing proteins, together with components of the electron transport chain, functions not only as a regulator of cell respiration, but also a modulator of intracellular cell metabolism. Moreover, diverse effects of NO and NO-derived reactive nitrogen species (RNS) involve precise interactions with different targets depending on concentration, temporal, and spatial restrictions. Although the role of NO in macrophage reprogramming has been in evidence for some time, current models have largely minimized its importance. It has, therefore, been hiding in plain sight. A review of the chemical properties of NO, past biochemical studies, and recent publications, necessitates that mechanisms of macrophage TCA reprogramming during stimulation must be re-imagined and re-interpreted as mechanistic results of NO exposure. The revised model of metabolic rewiring we describe here incorporates many early findings regarding NO biochemistry and brings NO out of hiding and to the forefront of macrophages immunometabolism.

7.
EMBO Mol Med ; 12(10): e11210, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32885605

ABSTRACT

Glutamine synthetase (GS) generates glutamine from glutamate and controls the release of inflammatory mediators. In macrophages, GS activity, driven by IL10, associates to the acquisition of M2-like functions. Conditional deletion of GS in macrophages inhibits metastasis by boosting the formation of anti-tumor, M1-like, tumor-associated macrophages (TAMs). From this basis, we evaluated the pharmacological potential of GS inhibitors in targeting metastasis, identifying glufosinate as a specific human GS inhibitor. Glufosinate was tested in both cultured macrophages and on mice bearing metastatic lung, skin and breast cancer. We found that glufosinate rewires macrophages toward an M1-like phenotype both at the primary tumor and metastatic site, countering immunosuppression and promoting vessel sprouting. This was also accompanied to a reduction in cancer cell intravasation and extravasation, leading to synchronous and metachronous metastasis growth inhibition, but no effects on primary tumor growth. Glufosinate treatment was well-tolerated, without liver and brain toxicity, nor hematopoietic defects. These results identify GS as a druggable enzyme to rewire macrophage functions and highlight the potential of targeting metabolic checkpoints in macrophages to treat cancer metastasis.


Subject(s)
Breast Neoplasms , Macrophages , Aminobutyrates , Animals , Female , Humans , Inflammation Mediators , Mice
8.
Elife ; 92020 08 19.
Article in English | MEDLINE | ID: mdl-32812866

ABSTRACT

Natural Killer (NK) cells have an important role in immune responses to viruses and tumours. Integrating changes in signal transduction pathways and cellular metabolism is essential for effective NK cells responses. The glycolytic enzyme Pyruvate Kinase Muscle 2 (PKM2) has described roles in regulating glycolytic flux and signal transduction, particularly gene transcription. While PKM2 expression is robustly induced in activated NK cells, mice lacking PKM2 in NK cells showed no defect in NK cell metabolism, transcription or antiviral responses to MCMV infection. NK cell metabolism was maintained due to compensatory PKM1 expression in PKM2-null NK cells. To further investigate the role of PKM2, we used TEPP-46, which increases PKM2 catalytic activity while inhibiting any PKM2 signalling functions. NK cells activated with TEPP-46 had reduced effector function due to TEPP-46-induced increases in oxidative stress. Overall, PKM2-regulated glycolytic metabolism and redox status, not transcriptional control, facilitate optimal NK cells responses.


Subject(s)
Gene Expression Regulation , Glycolysis , Killer Cells, Natural/metabolism , Pyruvate Kinase , Animals , Cells, Cultured , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Glycolysis/drug effects , Glycolysis/genetics , Mice , Oxidative Stress , Pyridazines/pharmacology , Pyrroles/pharmacology , Pyruvate Kinase/antagonists & inhibitors , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism , Signal Transduction
9.
Front Immunol ; 11: 397, 2020.
Article in English | MEDLINE | ID: mdl-32292401

ABSTRACT

The Triggering Receptor Expressed on Myeloid cells-like 4 (TREML4) is a member of the TREM receptor family, known modulators of inflammatory responses. We have previously found that TREML4 expression positively correlates with human coronary arterial calcification (CAC). However, the role of TREML4 in the pathogenesis of cardiovascular disease remains incompletely defined. Since macrophages play a key role in inflammatory conditions, we investigated if activated macrophages selectively expressed TREML4 and found that carriage of either one of the eQTL SNP's previously associated with increased TREML4 expression conferred higher expression in human inflammatory macrophages (M1) compared to alternatively activated macrophages (M2). Furthermore, we found that TREML4 expression in human M1 dysregulated several inflammatory pathways related to leukocyte activation, apoptosis and extracellular matrix degradation. Similarly, murine M1 expressed substantial levels of Treml4, as did oxLDL treated macrophages. Transcriptome analysis confirmed that murine Treml4 controls the expression of genes related to inflammation and lipid regulation pathways, suggesting a possible role in atherosclerosis. Analysis of Apoe-/-/Treml4-/- mice showed reduced plaque burden and lesion complexity as indicated by decreased stage scores, macrophage content and collagen deposition. Finally, transcriptome analysis of oxLDL-loaded murine macrophages showed that Treml4 represses a specific set of genes related to carbohydrate, ion and amino acid membrane transport. Metabolomic analysis confirmed that Treml4 deficiency may promote a beneficial relationship between iron homeostasis and glucose metabolism. Together, our results suggest that Treml4 plays a role in the development of cardiovascular disease, as indicated by Treml4-dependent dysregulation of macrophage inflammatory pathways, macrophage metabolism and promotion of vulnerability features in advanced lesions.


Subject(s)
Atherosclerosis/pathology , Cardiovascular Diseases/pathology , Macrophages/metabolism , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , Animals , Apolipoproteins E/deficiency , Atherosclerosis/immunology , Atherosclerosis/metabolism , Cardiovascular Diseases/immunology , Cardiovascular Diseases/metabolism , Gene Expression Regulation/immunology , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Macrophages/immunology
10.
Nat Commun ; 11(1): 698, 2020 02 04.
Article in English | MEDLINE | ID: mdl-32019928

ABSTRACT

Profound metabolic changes are characteristic of macrophages during classical activation and have been implicated in this phenotype. Here we demonstrate that nitric oxide (NO) produced by murine macrophages is responsible for TCA cycle alterations and citrate accumulation associated with polarization. 13C tracing and mitochondrial respiration experiments map NO-mediated suppression of metabolism to mitochondrial aconitase (ACO2). Moreover, we find that inflammatory macrophages reroute pyruvate away from pyruvate dehydrogenase (PDH) in an NO-dependent and hypoxia-inducible factor 1α (Hif1α)-independent manner, thereby promoting glutamine-based anaplerosis. Ultimately, NO accumulation leads to suppression and loss of mitochondrial electron transport chain (ETC) complexes. Our data reveal that macrophages metabolic rewiring, in vitro and in vivo, is dependent on NO targeting specific pathways, resulting in reduced production of inflammatory mediators. Our findings require modification to current models of macrophage biology and demonstrate that reprogramming of metabolism should be considered a result rather than a mediator of inflammatory polarization.


Subject(s)
Aconitate Hydratase/metabolism , Macrophages/enzymology , Nitric Oxide/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Aconitate Hydratase/genetics , Animals , Citric Acid/metabolism , Citric Acid Cycle , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation/genetics , Inflammation/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/enzymology , Mitochondria/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Pyruvic Acid/metabolism
11.
Nat Commun ; 9(1): 5099, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30504842

ABSTRACT

Neutrophils are a vital component of immune protection, yet in cancer they may promote tumour progression, partly by generating reactive oxygen species (ROS) that disrupts lymphocyte functions. Metabolically, neutrophils are often discounted as purely glycolytic. Here we show that immature, c-Kit+ neutrophils subsets can engage in oxidative mitochondrial metabolism. With limited glucose supply, oxidative neutrophils use mitochondrial fatty acid oxidation to support NADPH oxidase-dependent ROS production. In 4T1 tumour-bearing mice, mitochondrial fitness is enhanced in splenic neutrophils and is driven by c-Kit signalling. Concordantly, tumour-elicited oxidative neutrophils are able to maintain ROS production and T cell suppression when glucose utilisation is restricted. Consistent with these findings, peripheral blood neutrophils from patients with cancer also display increased immaturity, mitochondrial content and oxidative phosphorylation. Together, our data suggest that the glucose-restricted tumour microenvironment induces metabolically adapted, oxidative neutrophils to maintain local immune suppression.


Subject(s)
Mitochondria/metabolism , Neutrophils/physiology , Animals , CRISPR-Cas Systems , Cell Line, Tumor , Cells, Cultured , Flow Cytometry , Immunoblotting , Immunohistochemistry , Mice , Mice, Knockout , Microscopy, Confocal , Neutrophils/metabolism , Oxidation-Reduction , Oxidative Phosphorylation , Oxidative Stress , Reactive Oxygen Species/metabolism , Signal Transduction/physiology
12.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 3050-3059, 2018 09.
Article in English | MEDLINE | ID: mdl-29953926

ABSTRACT

Monoamine oxidase (MAO), a mitochondrial enzyme that oxidizes biogenic amines generating hydrogen peroxide, is a major source of oxidative stress in cardiac injury. However, the molecular mechanisms underlying its overactivation in pathological conditions are still poorly characterized. Here, we investigated whether the enhanced MAO-dependent hydrogen peroxide production can be due to increased substrate availability using a metabolomic profiling method. We identified N1-methylhistamine -the main catabolite of histamine- as an important substrate fueling MAO in Langendorff mouse hearts, directly perfused with a buffer containing hydrogen peroxide or subjected to ischemia/reperfusion protocol. Indeed, when these hearts were pretreated with the MAO inhibitor pargyline we observed N1-methylhistamine accumulation along with reduced oxidative stress. Next, we showed that synaptic terminals are the major source of N1-methylhistamine. Indeed, in vivo sympathectomy caused a decrease of N1-methylhistamine levels, which was associated with a marked protection in post-ischemic reperfused hearts. As far as the mechanism is concerned, we demonstrate that exogenous histamine is transported into isolated cardiomyocytes and triggers a rise in the levels of reactive oxygen species (ROS). Once again, pargyline pretreatment induced intracellular accumulation of N1-methylhistamine along with decrease in ROS levels. These findings uncover a receptor-independent mechanism for histamine in cardiomyocytes. In summary, our study reveals a novel and important pathophysiological causative link between MAO activation and histamine availability during pathophysiological conditions such as oxidative stress/cardiac injury.


Subject(s)
Heart Ventricles/pathology , Histamine/metabolism , Monoamine Oxidase/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/pathology , Animals , Disease Models, Animal , Heart Ventricles/cytology , Humans , Isolated Heart Preparation , Male , Metabolomics , Methylhistamines/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Myocardial Reperfusion Injury/etiology , Myocardium/cytology , Myocardium/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidation-Reduction , Oxidative Stress , Pargyline/pharmacology , Reactive Oxygen Species/metabolism
13.
Blood Adv ; 2(10): 1146-1156, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29784770

ABSTRACT

Given the essential roles of iron-sulfur (Fe-S) cofactors in mediating electron transfer in the mitochondrial respiratory chain and supporting heme biosynthesis, mitochondrial dysfunction is a common feature in a growing list of human Fe-S cluster biogenesis disorders, including Friedreich ataxia and GLRX5-related sideroblastic anemia. Here, our studies showed that restriction of Fe-S cluster biogenesis not only compromised mitochondrial oxidative metabolism but also resulted in decreased overall histone acetylation and increased H3K9me3 levels in the nucleus and increased acetylation of α-tubulin in the cytosol by decreasing the lipoylation of the pyruvate dehydrogenase complex, decreasing levels of succinate dehydrogenase and the histone acetyltransferase ELP3, and increasing levels of the tubulin acetyltransferase MEC17. Previous studies have shown that the metabolic shift in Toll-like receptor (TLR)-activated myeloid cells involves rapid activation of glycolysis and subsequent mitochondrial respiratory failure due to nitric oxide (NO)-mediated damage to Fe-S proteins. Our studies indicated that TLR activation also actively suppresses many components of the Fe-S cluster biogenesis machinery, which exacerbates NO-mediated damage to Fe-S proteins by interfering with cluster recovery. These results reveal new regulatory pathways and novel roles of the Fe-S cluster biogenesis machinery in modifying the epigenome and acetylome and provide new insights into the etiology of Fe-S cluster biogenesis disorders.


Subject(s)
Histones/metabolism , Iron-Sulfur Proteins/metabolism , Toll-Like Receptors/metabolism , Tubulin/metabolism , Acetylation , Humans
14.
Nat Commun ; 8(1): 2074, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29234000

ABSTRACT

The importance of metabolism in macrophage function has been reported, but the in vivo relevance of the in vitro observations is still unclear. Here we show that macrophage metabolites are defined in a specific tissue context, and these metabolites are crucially linked to tissue-resident macrophage functions. We find the peritoneum to be rich in glutamate, a glutaminolysis-fuel that is exploited by peritoneal-resident macrophages to maintain respiratory burst during phagocytosis via enhancing mitochondrial complex-II metabolism. This niche-supported, inducible mitochondrial function is dependent on protein kinase C activity, and is required to fine-tune the cytokine responses that control inflammation. In addition, we find that peritoneal-resident macrophage mitochondria are recruited to phagosomes and produce mitochondrially derived reactive oxygen species, which are necessary for microbial killing. We propose that tissue-resident macrophages are metabolically poised in situ to protect and exploit their tissue-niche by utilising locally available fuels to implement specific metabolic programmes upon microbial sensing.


Subject(s)
Macrophages, Peritoneal/metabolism , Peritoneum/immunology , Phagocytosis/immunology , Respiratory Burst/immunology , Stem Cell Niche/immunology , Animals , Electron Transport Complex II/metabolism , Female , Glutamic Acid/metabolism , Inflammation/immunology , Inflammation/microbiology , Macrophages, Peritoneal/cytology , Macrophages, Peritoneal/immunology , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Peritoneum/cytology , Peritoneum/microbiology , Phagosomes/immunology , Phagosomes/metabolism , Primary Cell Culture , Protein Kinase C/metabolism , Reactive Oxygen Species/metabolism
15.
Cell Rep ; 20(7): 1654-1666, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28813676

ABSTRACT

Glutamine-synthetase (GS), the glutamine-synthesizing enzyme from glutamate, controls important events, including the release of inflammatory mediators, mammalian target of rapamycin (mTOR) activation, and autophagy. However, its role in macrophages remains elusive. We report that pharmacologic inhibition of GS skews M2-polarized macrophages toward the M1-like phenotype, characterized by reduced intracellular glutamine and increased succinate with enhanced glucose flux through glycolysis, which could be partly related to HIF1α activation. As a result of these metabolic changes and HIF1α accumulation, GS-inhibited macrophages display an increased capacity to induce T cell recruitment, reduced T cell suppressive potential, and an impaired ability to foster endothelial cell branching or cancer cell motility. Genetic deletion of macrophagic GS in tumor-bearing mice promotes tumor vessel pruning, vascular normalization, accumulation of cytotoxic T cells, and metastasis inhibition. These data identify GS activity as mediator of the proangiogenic, immunosuppressive, and pro-metastatic function of M2-like macrophages and highlight the possibility of targeting this enzyme in the treatment of cancer metastasis.


Subject(s)
Enzyme Inhibitors/pharmacology , Glutamate-Ammonia Ligase/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Lung Neoplasms/drug therapy , Methionine Sulfoximine/pharmacology , Neovascularization, Pathologic/prevention & control , Animals , Cell Differentiation , Cell Line, Tumor , Cell Movement/drug effects , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelial Cells/pathology , Glucose/metabolism , Glutamate-Ammonia Ligase/deficiency , Glutamine/metabolism , Glycolysis/drug effects , Glycolysis/genetics , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/immunology , Injections, Subcutaneous , Interleukin-10/genetics , Interleukin-10/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/secondary , Macrophages/drug effects , Macrophages/immunology , Macrophages/pathology , Mice , Mice, Knockout , Monocytes/drug effects , Monocytes/immunology , Monocytes/pathology , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/pathology , Primary Cell Culture , Succinic Acid/metabolism , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/pathology
16.
FEBS J ; 284(6): 967-984, 2017 03.
Article in English | MEDLINE | ID: mdl-28118529

ABSTRACT

Cancer cells down-regulate different genes to give them a selective advantage in invasiveness and/or metastasis. The SLC25A26 gene encodes the mitochondrial carrier that catalyzes the import of S-adenosylmethionine (SAM) into the mitochondrial matrix, required for mitochondrial methylation processes, and is down-regulated in cervical cancer cells. In this study we show that SLC25A26 is down-regulated due to gene promoter hypermethylation, as a mechanism to promote cell survival and proliferation. Furthermore, overexpression of SLC25A26 in CaSki cells increases mitochondrial SAM availability and promotes hypermethylation of mitochondrial DNA, leading to decreased expression of key respiratory complex subunits, reduction of mitochondrial ATP and release of cytochrome c. In addition, increased SAM transport into mitochondria leads to impairment of the methionine cycle with accumulation of homocysteine at the expense of glutathione, which is strongly reduced. All these events concur to arrest the cell cycle in the S phase, induce apoptosis and enhance chemosensitivity of SAM carrier-overexpressing CaSki cells to cisplatin.


Subject(s)
Amino Acid Transport Systems/biosynthesis , Calcium-Binding Proteins/biosynthesis , Cytochromes c/biosynthesis , DNA, Mitochondrial/genetics , Drug Resistance, Neoplasm/genetics , Uterine Cervical Neoplasms/genetics , Adenosine Triphosphate/metabolism , Amino Acid Transport Systems/genetics , Apoptosis/genetics , Calcium-Binding Proteins/genetics , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cisplatin/administration & dosage , Cytochromes c/genetics , DNA Methylation/genetics , DNA, Mitochondrial/metabolism , Female , Gene Expression Regulation, Neoplastic , Glutathione/metabolism , Humans , Methionine/metabolism , Mitochondria/drug effects , Mitochondria/genetics , Promoter Regions, Genetic , S-Adenosylmethionine/metabolism , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology
17.
Antioxid Redox Signal ; 26(8): 351-363, 2017 03 10.
Article in English | MEDLINE | ID: mdl-27758118

ABSTRACT

AIMS: Microglial cells are brain-resident macrophages engaged in surveillance and maintained in a constant state of relative inactivity. However, their involvement in autoimmune diseases indicates that in pathological conditions microglia gain an inflammatory phenotype. The mechanisms underlying this change in the microglial phenotype are still unclear. Since metabolism is an important modulator of immune cell function, we focused our attention on glutamine synthetase (GS), a modulator of the response to lipopolysaccharide (LPS) activation in other cell types, which is expressed by microglia. RESULTS: GS inhibition enhances release of inflammatory mediators of LPS-activated microglia in vitro, leading to perturbation of the redox balance and decreased viability of cocultured neurons. GS inhibition also decreases insulin-mediated glucose uptake in microglia. In vivo, microglia-specific GS ablation enhances expression of inflammatory markers upon LPS treatment. In the spinal cords from experimental autoimmune encephalomyelitis (EAE), GS expression levels and glutamine/glutamate ratios are reduced. INNOVATION: Recently, metabolism has been highlighted as mediator of immune cell function through the discovery of mechanisms that (behind these metabolic changes) modulate the inflammatory response. The present study shows for the first time a metabolic mechanism mediating microglial response to a proinflammatory stimulus, pointing to GS activity as a master modulator of immune cell function and thus unraveling a potential therapeutic target. CONCLUSIONS: Our study highlights a new role of GS in modulating immune response in microglia, providing insights into the pathogenic mechanisms associated with inflammation and new strategies of therapeutic intervention. Antioxid. Redox Signal. 26, 351-363.


Subject(s)
Glutamate-Ammonia Ligase/metabolism , Inflammation/metabolism , Microglia/metabolism , Animals , Biomarkers , Cell Survival , Cells, Cultured , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Enzyme Activation , Female , Gene Expression , Glucose/metabolism , Glutamate-Ammonia Ligase/antagonists & inhibitors , Glutamate-Ammonia Ligase/genetics , Insulin/metabolism , Lipopolysaccharides/immunology , Metabolome , Metabolomics/methods , Mice , Mice, Knockout , Microglia/immunology , Neurons/metabolism , Nitric Oxide , Reactive Oxygen Species/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology
18.
Expert Rev Proteomics ; 13(3): 259-74, 2016.
Article in English | MEDLINE | ID: mdl-26837425

ABSTRACT

Mitochondria play a key role in eukaryotic cells, being mediators of energy, biosynthetic and regulatory requirements of these cells. Emerging proteomics techniques have allowed scientists to obtain the differentially expressed proteome or the proteomic redox status in mitochondria. This has unmasked the diversity of proteins with respect to subcellular location, expression and interactions. Mitochondria have become a research 'hot spot' in subcellular proteomics, leading to identification of candidate clinical targets in neurodegenerative diseases in which mitochondria are known to play pathological roles. The extensive efforts to rapidly obtain differentially expressed proteomes and unravel the redox proteomic status in mitochondria have yielded clinical insights into the neuropathological mechanisms of disease, identification of disease early stage and evaluation of disease progression. Although current technical limitations hamper full exploitation of the mitochondrial proteome in neurosciences, future advances are predicted to provide identification of specific therapeutic targets for neurodegenerative disorders.


Subject(s)
Alzheimer Disease/metabolism , Mitochondrial Proteins/metabolism , Parkinson Disease/metabolism , Proteomics/methods , Alzheimer Disease/diagnosis , Animals , Biomarkers/metabolism , Humans , Molecular Diagnostic Techniques/methods , Parkinson Disease/diagnosis
19.
Biochim Biophys Acta ; 1847(8): 729-38, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25917893

ABSTRACT

The mitochondrial citrate-malate exchanger (CIC), a known target of acetylation, is up-regulated in activated immune cells and plays a key role in the production of inflammatory mediators. However, the role of acetylation in CIC activity is elusive. We show that CIC is acetylated in activated primary human macrophages and U937 cells and the level of acetylation is higher in glucose-deprived compared to normal glucose medium. Acetylation enhances CIC transport activity, leading to a higher citrate efflux from mitochondria in exchange with malate. Cytosolic citrate levels do not increase upon activation of cells grown in deprived compared to normal glucose media, indicating that citrate, transported from mitochondria at higher rates from acetylated CIC, is consumed at higher rates. Malate levels in the cytosol are lower in activated cells grown in glucose-deprived compared to normal glucose medium, indicating that this TCA intermediate is rapidly recycled back into the cytosol where it is used by the malic enzyme. Additionally, in activated cells CIC inhibition increases the NADP+/NADPH ratio in glucose-deprived cells; this ratio is unchanged in glucose-rich grown cells due to the activity of the pentose phosphate pathway. Consistently, the NADPH-producing isocitrate dehydrogenase level is higher in activated glucose-deprived as compared to glucose rich cells. These results demonstrate that, in the absence of glucose, activated macrophages increase CIC acetylation to enhance citrate efflux from mitochondria not only to produce inflammatory mediators but also to meet the NADPH demand through the actions of isocitrate dehydrogenase and malic enzyme.


Subject(s)
Carrier Proteins/metabolism , Citric Acid/metabolism , Macrophage Activation/physiology , Malates/metabolism , Mitochondria/metabolism , NADP/metabolism , Acetylation , Biological Transport , Blotting, Western , Cells, Cultured , Cytosol/drug effects , Cytosol/metabolism , Glucose/metabolism , Humans , Immunoprecipitation , Interferon-gamma/pharmacology , Macrophage Activation/drug effects , Mitochondria/drug effects , Sirtuin 3/metabolism , Tumor Necrosis Factor-alpha/pharmacology , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...