Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Pest Manag Sci ; 78(2): 749-757, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34693637

ABSTRACT

BACKGROUND: Amaranthus palmeri S. Watson, a problematic weed infesting summer crops in Argentina, has developed multiple herbicide resistance. Resistance to acetolactate synthase (ALS)-inhibiting herbicides is particularly common, with high-level resistance mostly caused by different mutations in the ALS enzyme. Six versions of the enzyme were identified from a resistant A. palmeri population, carrying substitutions D376E, A205V, A122S, A282D, W574L and S653N. This work aims to provide a comparative analysis of these mutants and the wild-type (WT) enzyme to fully understand the herbicide resistance. Thus, all the versions of the ALS gene from A. palmeri were heterologously expressed and purified to evaluate their kinetics and inhibitory response against imazethapyr, diclosulam, chlorimuron-ethyl, flucarbazone-sodium and bispyribac-sodium. RESULTS: A decrease in catalytic efficiency was detected in the A205V, A122S-A282D, W574L and S653N ApALS enzymes, whereas only A205V and W574L substitutions also produced a decrease in the substrate affinity. In vitro ALS inhibition assays confirmed cross-resistance to almost all the herbicides tested, with the exception of A282D ApALS, which was as susceptible as WT ApALS. Moreover, the results confirmed that the novel substitution A122S provides cross-resistance to at least one herbicide within each of the five families of ALS inhibitors, and this property could be explained by a lower number of hydrophobic interactions between the herbicides and the mutant enzyme. CONCLUSION: This is the first report to compare various mutations in vitro from A. palmeri ALS. Our data contribute to understanding the impacts of herbicide resistance in this species. © 2021 Society of Chemical Industry.


Subject(s)
Acetolactate Synthase , Amaranthus , Herbicides , Acetolactate Synthase/genetics , Amaranthus/genetics , Herbicide Resistance/genetics , Herbicides/pharmacology , Mutation, Missense , Plant Proteins/genetics
2.
Plant Sci ; 290: 110255, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31779903

ABSTRACT

Herbicide resistant (HR) weeds are of major concern in modern agriculture. This situation is exacerbated by the massive adoption of herbicide-based technologies along with the overuse of a few active ingredients to control weeds over vast areas year after year. Also, many other anthropological, biological, and environmental factors have defined a higher rate of herbicide resistance evolution in numerous weed species around the world. This review focuses on two central points: 1) how these factors have affected the resistance evolution process; and 2) which cultural practices and new approaches would help to achieve an effective integrated weed management. We claim that global climate change is an unnoticed factor that may be acting on the selection of HR weeds, especially those evolving into non-target-site resistance mechanisms. And we present several new tools -such as Gene Drive and RNAi technologies- that may be adopted to cope with herbicide resistance spread, as well as discuss their potential application at field level. This is the first review that integrates agronomic and molecular knowledge of herbicide resistance. It covers not only the genetic basis of the most relevant resistance mechanisms but also the strengths and weaknesses of traditional and forthcoming agricultural practices.


Subject(s)
Biological Evolution , Herbicide Resistance/genetics , Plant Weeds/drug effects , Weed Control/methods , Climate Change , Crop Production/methods
3.
Pest Manag Sci ; 75(5): 1242-1251, 2019 May.
Article in English | MEDLINE | ID: mdl-30556254

ABSTRACT

BACKGROUND: The evolution of herbicide-resistant weeds is one of the most important concerns of global agriculture. Amaranthus hybridus L. is a competitive weed for summer crops in South America. In this article, we intend to unravel the molecular mechanisms by which an A. hybridus population from Argentina has become resistant to extraordinarily high levels of glyphosate. RESULTS: The glyphosate-resistant population (A) exhibited particularly high parameters of resistance (GR50 = 20 900 g ai ha-1 , Rf = 314), with all plants completing a normal life cycle even after 32X dose application. No shikimic acid accumulation was detected in the resistant plants at any of the glyphosate concentrations tested. Molecular and genetic analyses revealed a novel triple substitution (TAP-IVS: T102I, A103V, and P106S) in the 5-enol-pyruvylshikimate-3-phosphate synthase (EPSPS) enzyme of population A and an incipient increase on the epsps relative copy number but without effects on the epsps transcription levels. The novel mechanism was prevalent, with 48% and 52% of the individuals being homozygous and heterozygous for the triple substitution, respectively. In silico conformational studies revealed that TAP-IVS triple substitution would generate an EPSPS with a functional active site but with an increased restriction to glyphosate binding. CONCLUSION: The prevalence of the TAP-IVS triple substitution as the sole mechanism detected in the highly glyphosate resistant population suggests the evolution of a new glyphosate resistance mechanism arising in A. hybridus. This is the first report of a naturally occurring EPSPS triple substitution and the first glyphosate target-site resistance mechanism described in A. hybridus. © 2018 Society of Chemical Industry.


Subject(s)
3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Amaranthus/drug effects , Amaranthus/genetics , Amino Acid Substitution , Glycine/analogs & derivatives , Herbicide Resistance/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/chemistry , Amaranthus/enzymology , Amino Acid Sequence , Argentina , Base Sequence , Dose-Response Relationship, Drug , Glycine/pharmacology , Mutation , Glyphosate
4.
Pest Manag Sci ; 73(12): 2578-2584, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28703943

ABSTRACT

BACKGROUND: Herbicide-resistant weeds are a serious problem worldwide. Recently, two populations of Amaranthus palmeri with suspected cross-resistance to acetolactate synthase (ALS)-inhibiting herbicides (R1 and R2) were found by farmers in two locations in Argentina (Vicuña Mackenna and Totoras, respectively). We conducted studies to confirm and elucidate the mechanism of resistance. RESULTS: We performed in vivo dose-response assays, and confirmed that both populations had strong resistance to chlorimuron-ethyl, diclosulam and imazethapyr when compared with a susceptible population (S). In vitro ALS activity inhibition tests only indicated considerable resistance to imazethapyr and chlorimuron-ethyl, indicating that other non-target mechanisms could be involved in diclosulam resistance. Subsequently, molecular analysis of als nucleotide sequences revealed three single base-pair mutations producing substitutions in amino acids previously associated with resistance to ALS inhibitors, A122, W574, and S653. CONCLUSION: This is the first report of als resistance alleles in A. palmeri in Argentina. The data support the involvement of a target-site mechanism of resistance to ALS-inhibiting herbicides. © 2017 Society of Chemical Industry.


Subject(s)
Acetolactate Synthase/antagonists & inhibitors , Amaranthus/drug effects , Amaranthus/enzymology , Enzyme Inhibitors/pharmacology , Herbicides/pharmacology , Plant Proteins/antagonists & inhibitors , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Amaranthus/genetics , Argentina , Herbicide Resistance , Nicotinic Acids/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Pyrimidines/pharmacology , Sulfonylurea Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...