Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biosci Rep ; 43(11)2023 11 30.
Article in English | MEDLINE | ID: mdl-37975243

ABSTRACT

Acute high-altitude (HA) exposure can induce several pathologies. Dexamethasone (DEX) can be taken prophylactically to prevent HA disease, but the mechanism by which it acts in this setting is unclear. We studied the transcriptome of peripheral blood mononuclear cells (PBMCs) from 16 subjects at low altitude (LA, 225 m) and then 3 days after acute travel to HA (3500 m) during the India-Leh-Dexamethasone-Expedition-2020 (INDEX2020). Half of the participants received oral DEX prophylaxis 4 mg twice daily in an unblinded manner, starting 1 day prior to travel to HA, and 12 h prior to the first PBMC collection. PBMC transcriptome data were obtained from 16 subjects, half of whom received DEX. The principal component analysis demonstrated a clear separation of the groups by altitude and treatment. HA exposure resulted in a large number of gene expression changes, particularly in pathways of inflammation or the regulation of cell division, translation, or transcription. DEX prophylaxis resulted in changes in fewer genes, particularly in immune pathways. The gene sets modulated by HA and DEX were distinct. Deconvolution analysis to assess PBMC subpopulations suggested changes in B-cell, T-cell, dendritic cell, and myeloid cell numbers with HA and DEX exposures. Acute HA travel and DEX prophylaxis induce significant changes in the PBMC transcriptome. The observed benefit of DEX prophylaxis against HA disease may be mediated by suppression of inflammatory pathways and changing leukocyte population distributions.


Subject(s)
Dexamethasone , Leukocytes, Mononuclear , Humans , Altitude , Dexamethasone/pharmacology , Inflammation , Transcriptome
2.
PeerJ ; 11: e14473, 2023.
Article in English | MEDLINE | ID: mdl-36788813

ABSTRACT

Background: SARS-CoV-2 has affected every demography disproportionately, including even the native highland populations. Hypobaric-hypoxic settings at high-altitude (HA, >2,500 masl) present an extreme environment that impacts the survival of permanent residents, possibly including SARS-CoV-2. Conflicting hypotheses have been presented for COVID-19 incidence and fatality at HA. Objectives: To evaluate protection or risk against COVID-19 incidence and fatality in humans under hypobaric-hypoxic environment of high-altitude (>2,501 masl). Methods: Global COVID-19 data of March 2020-21, employed from official websites of the Indian Government, John Hopkins University, and Worldometer were clustered into 6 altitude categories. Clinical cofactors and comorbidities data were evaluated with COVID-19 incidence and fatality. Extensive comparisons and correlations using several statistical tools estimated the risk and protection. Results: Of relevance, data analyses revealed four distinct responses, namely, partial risk, total risk, partial protection, and total protection from COVID-19 at high-altitude indicating a mixed baggage and complexity of the infection. Surprisingly, it included the countries within the same geographic region. Moreover, body mass index, hypertension, and diabetes correlated significantly with COVID-19 incidence and fatality rate (P ≤ 0.05). Conclusions: Varied patterns of protection and risk against COVID-19 incidence and fatality were observed among the high-altitude populations. It is though premature to generalize COVID-19 effects on any particular demography without further extensive studies.


Subject(s)
COVID-19 , Diabetes Mellitus , Humans , COVID-19/epidemiology , SARS-CoV-2 , Incidence , Altitude , Hypoxia/epidemiology
3.
Article in English | MEDLINE | ID: mdl-36141455

ABSTRACT

Endothelin 1 (EDN1) encodes a potent endogenous vasoconstrictor, ET1, to maintain vascular homeostasis and redistribution of tissue blood flow during exercise. One of the EDN1 missense polymorphisms, rs5370 G/T, has strongly been associated with cardiopulmonary diseases. This study investigated the impact of rs5370 polymorphism in high-altitude pulmonary oedema (HAPE) disorder or maladaptation and adaptation physiology in a well-characterized case-control study of high-altitude and low-altitude populations comprising 310 samples each of HAPE-patients, HAPE-free controls and native highlanders. The rs5370 polymorphism was genotyped, and the gene expression and plasma level of EDN1 were evaluated. The functional relevance of each allele was investigated in the human embryonic kidney 293 cell line after exposure to hypoxia and computationally. The T allele was significantly more prevalent in HAPE-p compared to HAPE-f and HLs. The EDN1 gene expression and ET1 bio-level were significantly elevated in HAPE-p compared to controls. Compared to the G allele, the T allele was significantly associated with elevated levels of ET-1 in all three study groups and cells exposed to hypoxia. The in silico studies further confirmed the stabilizing effect of the T allele on the structural integrity and function of ET1 protein. The ET1 rs5370 T allele is associated with an increased concentration of ET-1 in vivo and in vitro, establishing it as a potent marker in the adaptation/maladaptation physiology under the high-altitude environment. This could also be pertinent in endurance exercises at high altitudes.


Subject(s)
Altitude Sickness , Endothelin-1 , Altitude , Altitude Sickness/genetics , Case-Control Studies , Endothelin-1/genetics , Humans , Hypoxia/metabolism , Vasoconstrictor Agents
4.
Front Pharmacol ; 13: 873867, 2022.
Article in English | MEDLINE | ID: mdl-35668947

ABSTRACT

Dexamethasone can be taken prophylactically to prevent hypobaric hypoxia-associated disorders of high-altitude. While dexamethasone-mediated protection against high-altitude disorders has been clinically evaluated, detailed sex-based mechanistic insights have not been explored. As part of our India-Leh-Dexamethasone-expedition-2020 (INDEX 2020) programme, we examined the phenotype of control (n = 14) and dexamethasone (n = 13) groups, which were airlifted from Delhi (∼225 m elevation) to Leh, Ladakh (∼3,500 m), India, for 3 days. Dexamethasone 4 mg twice daily significantly attenuated the rise in blood pressure, heart rate, pulmonary pressure, and drop in SaO2 resulting from high-altitude exposure compared to control-treated subjects. Of note, the effect of dexamethasone was substantially greater in women than in men, in whom the drug had relatively little effect. Thus, for the first time, this study shows a sex-biased regulation by dexamethasone of physiologic parameters resulting from the hypoxic environment of high-altitude, which impacts the development of high-altitude pulmonary hypertension and acute mountain sickness. Future studies of cellular contributions toward sex-specific regulation may provide further insights and preventive measures in managing sex-specific, high-altitude-related disorders.

5.
Pulm Circ ; 10(4): 2045894020913475, 2020.
Article in English | MEDLINE | ID: mdl-33282179

ABSTRACT

High-altitude pulmonary edema occurs most frequently in non-acclimatized low landers on exposure to altitude ≥2500 m. High-altitude pulmonary edema is a complex condition that involves perturbation of signaling pathways in vasoconstrictors, vasodilators, anti-diuretics, and vascular growth factors. Genetic variations are instrumental in regulating these pathways and evidence is accumulating for a role of epigenetic modification in hypoxic responses. This review focuses on the crosstalk between high-altitude pulmonary edema-associated genetic variants and transcription factors, comparing high-altitude adapted and high-altitude pulmonary edema-afflicted subjects. This approach might ultimately yield biomarker information both to understand and to design therapies for high-altitude adaptation.

6.
Am J Physiol Endocrinol Metab ; 319(3): E562-E567, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32726128

ABSTRACT

Epidemiological data in COVID-19 mortality indicate that men are more prone to die of SARS-CoV-2 infection than women, but biological causes for this sexual dimorphism are unknown. We discuss the prospective behavioral and biological differences between the sexes that could be attributed to this sex-based differentiation. The female sex hormones and the immune stimulatory genes, including Toll-like receptors, interleukins, and micro-RNAs present on X-chromosome, may impart lesser infectivity and mortality of the SARS-CoV-2 in females over males. The sex hormone estrogen interacts with the renin-angiotensin-aldosterone system, one of the most critical pathways in COVID-19 infectivity, and modulates the vasomotor homeostasis. Testosterone on the contrary enhances the levels of the two most critical molecules, angiotensin-converting enzyme 2 (ACE2) and the transmembrane protease serine-type 2 (TMPRSS2), transcriptionally and posttranslationally, thereby increasing viral load and delaying viral clearance in men as compared with women. We propose that modulating sex hormones, either by increasing estrogen or antiandrogen, may be a therapeutic option to reduce mortality from SARS-CoV-2.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/mortality , Gonadal Steroid Hormones/physiology , Pneumonia, Viral/mortality , Sex Characteristics , Angiotensin-Converting Enzyme 2 , Betacoronavirus/drug effects , Betacoronavirus/metabolism , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/genetics , Coronavirus Infections/virology , Estradiol/metabolism , Estradiol/pharmacology , Female , Gene Expression Regulation/drug effects , Humans , Male , Mortality , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/epidemiology , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , Renin-Angiotensin System/drug effects , SARS-CoV-2 , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Sex Factors , Viral Load/drug effects , Viral Load/genetics
7.
Biochemistry ; 52(48): 8652-62, 2013 Dec 03.
Article in English | MEDLINE | ID: mdl-24175947

ABSTRACT

The cocaine-binding aptamer is unusual in that it tightly binds molecules other than the ligand it was selected for. Here, we study the interaction of the cocaine-binding aptamer with one of these off-target ligands, quinine. Isothermal titration calorimetry was used to quantify the quinine-binding affinity and thermodynamics of a set of sequence variants of the cocaine-binding aptamer. We find that the affinity of the cocaine-binding aptamer for quinine is 30-40 times stronger than it is for cocaine. Competitive-binding studies demonstrate that both quinine and cocaine bind at the same site on the aptamer. The ligand-induced structural-switching binding mechanism of an aptamer variant that contains three base pairs in stem 1 is retained with quinine as a ligand. The short stem 1 aptamer is unfolded or loosely folded in the free form and becomes folded when bound to quinine. This folding is confirmed by NMR spectroscopy and by the short stem 1 construct having a more negative change in heat capacity of quinine binding than is seen when stem 1 has six base pairs. Small-angle X-ray scattering (SAXS) studies of the free aptamer and both the quinine- and the cocaine-bound forms show that, for the long stem 1 aptamers, the three forms display similar hydrodynamic properties, and the ab initio shape reconstruction structures are very similar. For the short stem 1 aptamer there is a greater variation among the SAXS-derived ab initio shape reconstruction structures, consistent with the changes expected with its structural-switching binding mechanism.


Subject(s)
Aptamers, Nucleotide/metabolism , Cocaine/metabolism , Quinine/metabolism , Aptamers, Nucleotide/chemistry , Base Sequence , Binding Sites , Binding, Competitive , Cocaine/chemistry , Hydrodynamics , Ligands , Molecular Sequence Data , Nucleic Acid Conformation , Osmolar Concentration , Quinine/chemistry , Substrate Specificity , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...