Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 382(6673): eadg5579, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37995219

ABSTRACT

During vertebrate organogenesis, increases in morphological complexity are tightly coupled to morphogen expression. In this work, we studied how morphogens influence self-organizing processes at the collective or "supra"-cellular scale in avian skin. We made physical measurements across length scales, which revealed morphogen-enabled material property differences that were amplified at supracellular scales in comparison to cellular scales. At the supracellular scale, we found that fibroblast growth factor (FGF) promoted "solidification" of tissues, whereas bone morphogenetic protein (BMP) promoted fluidity and enhanced mechanical activity. Together, these effects created basement membrane-less compartments within mesenchymal tissue that were mechanically primed to drive avian skin tissue budding. Understanding this multiscale process requires the ability to distinguish between proximal effects of morphogens that occur at the cellular scale and their functional effects, which emerge at the supracellular scale.


Subject(s)
Bone Morphogenetic Proteins , Feathers , Organogenesis , Vertebrates , Animals , Bone Morphogenetic Proteins/metabolism , Vertebrates/growth & development , Fibroblast Growth Factors/metabolism , Feathers/growth & development , Dermis , Chick Embryo
2.
Cell ; 185(11): 1960-1973.e11, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35551765

ABSTRACT

During vertebrate embryogenesis, cell collectives engage in coordinated behavior to form tissue structures of increasing complexity. In the avian skin, assembly into follicles depends on intrinsic mechanical forces of the dermis, but how cell mechanics initiate pattern formation is not known. Here, we reconstitute the initiation of follicle patterning ex vivo using only freshly dissociated avian dermal cells and collagen. We find that contractile cells physically rearrange the extracellular matrix (ECM) and that ECM rearrangement further aligns cells. This exchange transforms a mechanically unlinked collective of dermal cells into a continuum, with coherent, long-range order. Combining theory with experiment, we show that this ordered cell-ECM layer behaves as an active contractile fluid that spontaneously forms regular patterns. Our study illustrates a role for mesenchymal dynamics in generating cell-level ordering and tissue-level patterning through a fluid instability-processes that may be at play across morphological symmetry-breaking contexts.


Subject(s)
Extracellular Matrix , Hair Follicle , Animals , Collagen , Skin , Vertebrates
3.
PLoS One ; 16(6): e0252949, 2021.
Article in English | MEDLINE | ID: mdl-34170927

ABSTRACT

To address the need for simple, safe, sensitive, and scalable SARS-CoV-2 tests, we validated and implemented a PCR test that uses a saliva collection kit use at home. Individuals self-collected 300 µl saliva in vials containing Darnell Rockefeller University Laboratory (DRUL) buffer and extracted RNA was assayed by RT-PCR (the DRUL saliva assay). The limit of detection was confirmed to be 1 viral copy/µl in 20 of 20 replicate extractions. Viral RNA was stable in DRUL buffer at room temperature up to seven days after sample collection, and safety studies demonstrated that DRUL buffer immediately inactivated virus at concentrations up to 2.75x106 PFU/ml. Results from SARS-CoV-2 positive nasopharyngeal (NP) swab samples collected in viral transport media and assayed with a standard FDA Emergency Use Authorization (EUA) test were highly correlated with samples placed in DRUL buffer. Direct comparison of results from 162 individuals tested by FDA EUA oropharyngeal (OP) or NP swabs with co-collected saliva samples identified four otherwise unidentified positive cases in DRUL buffer. Over six months, we collected 3,724 samples from individuals ranging from 3 months to 92 years of age. This included collecting weekly samples over 10 weeks from teachers, children, and parents from a pre-school program, which allowed its safe reopening while at-risk pods were quarantined. In sum, we validated a simple, sensitive, stable, and safe PCR-based test using a self-collected saliva sample as a valuable tool for clinical diagnosis and screening at workplaces and schools.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19 , SARS-CoV-2 , Saliva/virology , Schools , Specimen Handling , COVID-19/diagnosis , COVID-19/genetics , Child , Female , Humans , Male
4.
Dev Cell ; 56(11): 1589-1602.e9, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33932332

ABSTRACT

Toll-like receptors are essential for animal development and survival, with conserved roles in innate immunity, tissue patterning, and cell behavior. The mechanisms by which Toll receptors signal to the nucleus are well characterized, but how Toll receptors generate rapid, localized signals at the cell membrane to produce acute changes in cell polarity and behavior is not known. We show that Drosophila Toll receptors direct epithelial convergent extension by inducing planar-polarized patterns of Src and PI3-kinase (PI3K) activity. Toll receptors target Src activity to specific sites at the membrane, and Src recruits PI3K to the Toll-2 complex through tyrosine phosphorylation of the Toll-2 cytoplasmic domain. Reducing Src or PI3K activity disrupts planar-polarized myosin assembly, cell intercalation, and convergent extension, whereas constitutive Src activity promotes ectopic PI3K and myosin cortical localization. These results demonstrate that Toll receptors direct cell polarity and behavior by locally mobilizing Src and PI3K activity.


Subject(s)
Embryonic Development/genetics , Phosphatidylinositol 3-Kinases/genetics , Toll-Like Receptors/genetics , src-Family Kinases/genetics , Actomyosin/metabolism , Animals , Cell Membrane/genetics , Cell Polarity/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Morphogenesis/genetics
5.
Dev Cell ; 51(2): 208-221.e6, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31495696

ABSTRACT

Epithelial cells dynamically self-organize in response to extracellular spatial cues relayed by cell-surface receptors. During convergent extension in Drosophila, Toll-related receptors direct planar polarized cell rearrangements that elongate the head-to-tail axis. However, many cells establish polarity in the absence of Toll receptor activity, indicating the presence of additional spatial cues. Here we demonstrate that the leucine-rich-repeat receptor Tartan and the teneurin Ten-m provide critical polarity signals at epithelial compartment boundaries. The Tartan and Ten-m extracellular domains interact in vitro, and Tartan promotes Ten-m localization to compartment boundaries in vivo. We show that Tartan and Ten-m are necessary for the planar polarity and organization of compartment boundary cells. Moreover, ectopic stripes of Tartan and Ten-m are sufficient to induce myosin accumulation at stripe boundaries. These results demonstrate that the Tartan/Ten-m and Toll receptor systems together create a high-resolution network of spatial cues that guides cell behavior during convergent extension.


Subject(s)
Cell Polarity/physiology , Drosophila Proteins/metabolism , Epithelial Cells/cytology , Morphogenesis/physiology , Animals , Carrier Proteins/metabolism , Drosophila/metabolism , Drosophila melanogaster/metabolism , Embryo, Nonmammalian/cytology , Receptors, Cell Surface/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...