Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 110(10): 2749-63, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23568816

ABSTRACT

High-level production of heterologous proteins is likely to impose a metabolic burden on the host cell and can thus affect various aspects of cellular physiology. A data-driven approach was applied to study the secretory production of a human insulin analog precursor (IAP) in Saccharomyces cerevisiae during prolonged cultivation (80 generations) in glucose-limited aerobic chemostat cultures. Physiological characterization of the recombinant cells involved a comparison with cultures of a congenic reference strain that did not produce IAP, and time-course analysis of both strains aimed at identifying the metabolic adaptation of the cells towards the burden of IAP production. All cultures were examined at high cell density conditions (30 g/L dry weight) to increase the industrial relevance of the results. The burden of heterologous protein production in the recombinant strain was explored by global transcriptome analysis and targeted metabolome analysis, including the analysis of intracellular amino acid pools, glycolytic metabolites, and TCA intermediates. The cellular re-arrangements towards IAP production were categorized in direct responses, for example, enhanced metabolism of amino acids as precursors for the formation of IAP, as well as indirect responses, for example, changes in the central carbon metabolism. As part of the long-term adaptation, a metabolic re-modeling of the IAP-expressing strain was observed, indicating an augmented negative selection pressure on glycolytic overcapacity, and the emergence of mitochondrial dysfunction. The evoked metabolic re-modeling of the cells led to less optimal conditions with respect to the expression and processing of the target protein and thus decreased the cellular expression capacity for the secretory production of IAP during prolonged cultivation.


Subject(s)
Bioreactors/microbiology , Insulins/metabolism , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/physiology , Adaptation, Biological/physiology , Amino Acids/metabolism , Basic-Leucine Zipper Transcription Factors/analysis , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Culture Techniques/methods , Cluster Analysis , Genetic Vectors , Humans , Insulins/analysis , Insulins/genetics , Metabolic Networks and Pathways/physiology , Metabolome/physiology , Recombinant Proteins/analysis , Recombinant Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/analysis , Saccharomyces cerevisiae Proteins/metabolism , Transcriptome/physiology
2.
Appl Microbiol Biotechnol ; 97(9): 3939-48, 2013 May.
Article in English | MEDLINE | ID: mdl-22782252

ABSTRACT

The use of auxotrophic Saccharomyces cerevisiae strains for improved production of a heterologous protein was examined. Two different marker genes were investigated, encoding key enzymes in the metabolic pathways for amino acid (LEU2) and pyrimidine (URA3) biosynthesis, respectively. Expression plasmids, carrying the partly defective selection markers LEU2d and URA3d, were constructed. Two CEN.PK-derived strains were chosen and insulin analogue precursor was selected as a model protein. Different truncations of the LEU2 and URA3 promoters were used as the mean to titrate the plasmid copy number and thus the recombinant gene dosage in order to improve insulin productivity. Experiments were initially carried out in batch mode to examine the stability of yeast transformants and to select high yielding mutants. Next, chemostat cultivations were run at high cell density to address industrial applicability and long-term expression stability of the transformants. We found that the choice of auxotrophic marker is crucial for developing a yeast expression system with stable heterologous protein production. The incremental truncation of the URA3 promoter led to higher plasmid copy numbers and IAP yields, whereas the truncation of the LEU2 promoter caused low plasmid stability. We show that the modification of the level of the recombinant gene dosage by varying the degree of promoter truncation can be a strong tool for optimization of productivity. The application of the URA3d-based expression systems showed a high potential for industrial protein production and for further academic studies.


Subject(s)
Saccharomyces cerevisiae/metabolism , Insulin/genetics , Insulin/metabolism , Plasmids/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
3.
Microb Cell Fact ; 10: 104, 2011 Dec 07.
Article in English | MEDLINE | ID: mdl-22151908

ABSTRACT

BACKGROUND: The adaptation of unicellular organisms like Saccharomyces cerevisiae to alternating nutrient availability is of great fundamental and applied interest, as understanding how eukaryotic cells respond to variations in their nutrient supply has implications spanning from physiological insights to biotechnological applications. RESULTS: The impact of a step-wise restricted supply of phosphate on the physiological state of S. cerevisiae cells producing human Insulin was studied. The focus was to determine the changes within the global gene expression of cells being cultured to an industrially relevant high cell density of 33 g/l cell dry weight and under six distinct phosphate concentrations, ranging from 33 mM (unlimited) to 2.6 mM (limited). An increased flux through the secretory pathway, being induced by the PHO circuit during low P(i) supplementation, proved to enhance the secretory production of the heterologous protein. The re-distribution of the carbon flux from biomass formation towards increased glycerol production under low phosphate led to increased transcript levels of the insulin gene, which was under the regulation of the TPI1 promoter. CONCLUSIONS: Our study underlines the dynamic character of adaptive responses of cells towards a change in their nutrient access. The gradual decrease of the phosphate supply resulted in a step-wise modulated phenotypic response, thereby alternating the specific productivity and the secretory flux. Our work emphasizes the importance of reduced phosphate supply for improved secretory production of heterologous proteins.


Subject(s)
Gene Expression Profiling , Insulin, Regular, Human/metabolism , Phosphates/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Gene Expression Regulation, Fungal , Humans , Insulin, Regular, Human/genetics , Phenotype , Protein Transport , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...