Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Arthritis Rheumatol ; 75(11): 2054-2061, 2023 11.
Article in English | MEDLINE | ID: mdl-37134144

ABSTRACT

OBJECTIVE: The selectivity of JAK inhibitors (Jakinibs) forms the basis for understanding their clinical characteristics; however, evaluation of selectivity is hampered by the lack of comprehensive head-to-head studies. Our objective was to profile in parallel Jakinibs indicated or evaluated for rheumatic diseases for their JAK and cytokine selectivity in vitro. METHODS: We analyzed 10 Jakinibs for JAK isoform selectivity by assaying their inhibition of JAK kinase activity, binding to kinase and pseudokinase domains, and inhibition of cytokine signaling using blood samples from healthy volunteers and using isolated peripheral blood mononuclear cells (PBMCs) from patients with rheumatoid arthritis and from healthy donors. RESULTS: Pan-Jakinibs effectively suppressed kinase activity of 2 to 3 JAK family members, whereas isoform-targeted Jakinibs possessed varying degrees of selectivity for 1 or 2 JAK family members. In human leukocytes, Jakinibs predominantly inhibited the JAK1-dependent cytokines interleukin-2 (IL-2), IL-6, and interferons (IFNs). In PBMCs from patients with rheumatoid arthritis compared with healthy controls, inhibition of these cytokines was more pronounced, and some cell-type and STAT isoform differences were observed. Novel Jakinibs demonstrated high selectivity: the covalent Jakinib ritlecitinib showed 900- to 2,500-fold selectivity for JAK3 over other JAKs and specific suppression of IL-2-signaling, whereas the allosteric TYK2 inhibitor deucravacitinib inhibited IFNα signaling with high specificity. Interestingly, deucravacitinib targeted the regulatory pseudokinase domain and did not affect JAK in vitro kinase activity. CONCLUSION: Inhibition of JAK kinase activity did not directly translate into cellular inhibition of JAK/STAT signaling. Despite differences in JAK selectivity, the cytokine inhibition profiles of currently approved Jakinibs were highly similar, with preference for JAK1-mediated cytokines. Novel types of Jakinibs showed narrow cytokine inhibition profile specific for JAK3- or TYK2-mediated signaling.


Subject(s)
Arthritis, Rheumatoid , Janus Kinase Inhibitors , Humans , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Interleukin-2 , Leukocytes, Mononuclear/metabolism , Janus Kinases/metabolism , Arthritis, Rheumatoid/drug therapy , Cytokines/metabolism , Protein Isoforms
2.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36678572

ABSTRACT

Hyperactive mutation V617F in the JAK2 regulatory pseudokinase domain (JH2) is prevalent in patients with myeloproliferative neoplasms. Here, we identified novel small molecules that target JH2 of JAK2 V617F and characterized binding via biochemical and structural approaches. Screening of 107,600 small molecules resulted in identification of 55 binders to the ATP-binding pocket of recombinant JAK2 JH2 V617F protein at a low hit rate of 0.05%, which indicates unique structural characteristics of the JAK2 JH2 ATP-binding pocket. Selected hits and structural analogs were further assessed for binding to JH2 and JH1 (kinase) domains of JAK family members (JAK1-3, TYK2) and for effects on MPN model cell viability. Crystal structures were determined with JAK2 JH2 wild-type and V617F. The JH2-selective binders were identified in diaminotriazole, diaminotriazine, and phenylpyrazolo-pyrimidone chemical entities, but they showed low-affinity, and no inhibition of MPN cells was detected, while compounds binding to both JAK2 JH1 and JH2 domains inhibited MPN cell viability. X-ray crystal structures of protein-ligand complexes indicated generally similar binding modes between the ligands and V617F or wild-type JAK2. Ligands of JAK2 JH2 V617F are applicable as probes in JAK-STAT research, and SAR optimization combined with structural insights may yield higher-affinity inhibitors with biological activity.

3.
Clin Exp Immunol ; 210(2): 141-150, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36124688

ABSTRACT

The data on the effects of tofacitinib on soluble proteins in patients with rheumatoid arthritis (RA) is currently very limited. We analyzed how tofacitinib treatment and thus inhibition of the Janus kinase-signal transducer and activation of transcription pathway affects the in vivo levels of inflammation-related plasma proteins in RA patients. In this study, 16 patients with active RA [28-joint disease activity score (DAS28) >3.2] despite treatment with conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) started tofacitinib treatment 5 mg twice daily. Levels of 92 inflammation-related plasma proteins were determined by proximity extension assay at baseline and at 3 months. Tofacitinib treatment for 3 months, in csDMARD background, decreased the mean DAS28 from 4.4 to 2.6 (P < 0.001). Marked (>20%) and statistically significant (P < 0.05) changes were found in the levels of 21 proteins, 18 of which decreased and 3 increased. Of these proteins, 17 are directly involved in inflammatory responses or in the cellular response to cytokines. The highest (>50%) decrease was observed for interleukin-6 (IL-6), C-X-C motif chemokine ligand 1, matrix metalloproteinase-1, and AXIN1. Higher baseline levels of IL-6 and lower levels of C-C motif chemokine 11 and Delta and Notch-like epidermal growth factor-related receptors were associated with DAS28 improvement. Our results indicate that tofacitinib downregulates several proinflammatory plasma proteins that may contribute to the clinical efficacy of tofacitinib. In addition, soluble biomarkers may predict the treatment response to tofacitinib.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Protein Kinase Inhibitors , Humans , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Biomarkers , Blood Proteins , Chemokines , Inflammation , Interleukin-6 , Protein Kinase Inhibitors/therapeutic use , Pyrroles/therapeutic use , Treatment Outcome
4.
Front Immunol ; 12: 738481, 2021.
Article in English | MEDLINE | ID: mdl-34630419

ABSTRACT

Objective: Current knowledge on the actions of tofacitinib on cytokine signaling pathways in rheumatoid arthritis (RA) is based on in vitro studies. Our study is the first to examine the effects of tofacitinib treatment on Janus kinase (JAK) - signal transducer and activator of transcription (STAT) pathways in vivo in patients with RA. Methods: Sixteen patients with active RA, despite treatment with conventional synthetic disease-modifying antirheumatic drugs (csDMARDs), received tofacitinib 5 mg twice daily for three months. Levels of constitutive and cytokine-induced phosphorylated STATs in peripheral blood monocytes, T cells and B cells were measured by flow cytometry at baseline and three-month visits. mRNA expression of JAKs, STATs and suppressors of cytokine signaling (SOCS) were measured from peripheral blood mononuclear cells (PBMCs) by quantitative PCR. Association of baseline signaling profile with treatment response was also investigated. Results: Tofacitinib, in csDMARDs background, decreased median disease activity score (DAS28) from 4.4 to 2.6 (p < 0.001). Tofacitinib treatment significantly decreased cytokine-induced phosphorylation of all JAK-STAT pathways studied. However, the magnitude of the inhibitory effect depended on the cytokine and cell type studied, varying from 10% to 73% inhibition following 3-month treatment with tofacitinib. In general, strongest inhibition by tofacitinib was observed with STAT phosphorylations induced by cytokines signaling through the common-γ-chain cytokine receptor in T cells, while lowest inhibition was demonstrated for IL-10 -induced STAT3 phosphorylation in monocytes. Constitutive STAT1, STAT3, STAT4 and STAT5 phosphorylation in monocytes and/or T cells was also downregulated by tofacitinib. Tofacitinib treatment downregulated the expression of several JAK-STAT pathway components in PBMCs, SOCSs showing the strongest downregulation. Baseline STAT phosphorylation levels in T cells and monocytes and SOCS3 expression in PBMCs correlated with treatment response. Conclusions: Tofacitinib suppresses multiple JAK-STAT pathways in cytokine and cell population specific manner in RA patients in vivo. Besides directly inhibiting JAK activation, tofacitinib downregulates the expression of JAK-STAT pathway components. This may modulate the effects of tofacitinib on JAK-STAT pathway activation in vivo and explain some of the differential findings between the current study and previous in vitro studies. Finally, baseline immunological markers associate with the treatment response to tofacitinib.


Subject(s)
Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Janus Kinase Inhibitors/therapeutic use , Janus Kinases/antagonists & inhibitors , Leukocytes, Mononuclear/drug effects , Piperidines/therapeutic use , Pyrimidines/therapeutic use , STAT Transcription Factors/metabolism , Adult , Aged , Antirheumatic Agents/adverse effects , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/enzymology , Arthritis, Rheumatoid/genetics , Cytokines/metabolism , Female , Humans , Janus Kinase Inhibitors/adverse effects , Janus Kinases/genetics , Janus Kinases/metabolism , Leukocytes, Mononuclear/enzymology , Male , Middle Aged , Phosphorylation , Piperidines/adverse effects , Prospective Studies , Pyrimidines/adverse effects , STAT Transcription Factors/genetics , Signal Transduction , Suppressor of Cytokine Signaling 3 Protein/metabolism , Time Factors , Treatment Outcome
5.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34451894

ABSTRACT

Interferon regulatory factor 2 binding protein 2 (IRF2BP2) is a transcriptional coregulator that has an important role in the regulation of the immune response. IRF2BP2 has been associated with the Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathway, but its exact role remains elusive. Here, we identified a novel clinical variant, IRF2BP2 c.625_665del, from two members of a family with inflammatory conditions and investigated the function of IRF2BP2 and c.625_665del mutation in JAK-STAT pathway activation and inflammatory signaling. The levels of constitutive and cytokine-induced phosphorylation of STATs and total STAT1 in peripheral blood monocytes, T cells, and B cells from the patients and four healthy controls were measured by flow cytometry. Inflammation-related gene expression was studied in peripheral blood mononuclear cells using direct digital detection of mRNA (NanoString). Finally, we studied the relationship between IRF2BP2 and STAT1 activation using a luciferase reporter system in a cell model. Our results show that patients having the IRF2BP2 c.625_665del mutation presented overexpression of STAT1 protein and increased constitutive activation of STAT1. In addition, interferon-induced JAK-STAT signaling was upregulated, and several interferon-inducible genes were overexpressed. Constitutive phosphorylation of STAT5 was also found to be upregulated in CD4+ T cells from the patients. Using a cell model, we show that IRF2BP2 was needed to attenuate STAT1 transcriptional activity and that IRF2BP2 c.625_665del mutation failed in this. We conclude that IRF2BP2 has an important role in suppressing immune responses elicited by STAT1 and STAT5 and suggest that aberrations in IRF2BP2 can lead to abnormal function of intrinsic immunity.

6.
Basic Clin Pharmacol Toxicol ; 123 Suppl 5: 62-71, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29443452

ABSTRACT

Many adipose tissue-related diseases, such as obesity and type 2 diabetes, are worldwide epidemics. For studying these diseases, relevant human cell models are needed. In this study, we developed a vascularized adipose tissue model where human adipose stromal cells and human umbilical cord vein endothelial cells were cocultured with natural adipogenic and defined serum-free angiogenic media for 14 days. Several different protocols were compared to each other. The protocols varied in cell numbers and plating sequences. Lipid accumulation was studied with AdipoRed reagent, relative cell number with WST-1 reagent, gene expression of glut4, leptin, aP2, adiponectin, PPARγ and PPARγ2 with RT-qPCR. Secretion of adiponectin, leptin and aP2 was analysed with ELISA. The immunostained vascular network was imaged with Cell-IQ and area quantified using ImageJ. In this study, both angiogenesis and adipogenesis were successfully induced. Protocols produced strong lipid accumulation, good vascular network formation and induced adipocyte-specific protein secretion and expression of studied adipocyte genes. Results showed that cell numbers and cell plating sequences are important factors when aiming at in vitro standardized tissue model. Presence of mature vasculature appeared leads to faster the maturation of adipocytes judged by the lipid accumulation and gene expression results. The developed vascularized adipose tissue model is simple to use, easily modifiable to suit various applications and as such, a promising new tool for adipose tissue research when, for example, studying the effect of different cell types on adipose tissue function or for mechanistic studies.


Subject(s)
Adipose Tissue/metabolism , Cell Culture Techniques/methods , Diabetes Mellitus, Type 2/metabolism , Neovascularization, Physiologic , Obesity/metabolism , Adipocytes , Adipogenesis , Adiponectin/genetics , Adiponectin/metabolism , Adipose Tissue/blood supply , Adipose Tissue/cytology , Coculture Techniques/methods , Culture Media, Serum-Free , Diabetes Mellitus, Type 2/etiology , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Glucose Transporter Type 4/genetics , Human Umbilical Vein Endothelial Cells , Humans , Leptin/genetics , Leptin/metabolism , Lipid Metabolism/physiology , Obesity/etiology , PPAR gamma/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...