Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 901: 165940, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37541515

ABSTRACT

Salinity of nitrate-laden wastewaters, such as those produced by metal industries, tanneries, and wet flue gas cleaning systems may affect their treatment by denitrification. Salt inhibition of denitrification has been reported, while impacts of individual ions remain poorly understood whilst being relevant for wastewaters where often the concentration of a single ion rather than the salts varies. The aim of this study was to determine the inhibition by inorganic ions (Na+, Cl-, SO42- and K+) commonly present in saline wastewaters on denitrification and reveal its potential for the treatment of such waste streams, like those produced by NOx-SOx removal scrubbers. The inhibitory effects were investigated for both heterotrophic (enrichment culture) and autotrophic (T. denitrificans) denitrification in batch assays, by using NaCl, Na2SO4, KCl and K2SO4 salts at increasing concentrations. The half inhibition concentrations (IC50) of Na+ (as NaCl), Na+ (as Na2SO4) and Cl- (as KCl) were: 4.3 ± 0.3, 7.9 ± 0.5 and 5.2 ± 0.3 g/L for heterotrophic, and 1-2.5, 2.5-5 and 4.1 ± 0.3 g/L for autotrophic denitrification, respectively. Heterotrophic denitrification was completely inhibited at 20 g/L Na+ (as NaCl), 30 g/L Na+ (as Na2SO4) and 30 g/L Cl- (as KCl), while autotrophic at 8 g/L Na+ (as NaCl), 10 g/L Na+ (as Na2SO4) and 15 g/L Cl- (as KCl). In both cases, Cl- addition had the most important role in decreasing denitrification rate, while Na+ at 1 g/L stimulated autotrophic denitrification but rapidly inhibited the rate at higher concentrations. Nitrite reduction was less inhibited by the ions than nitrate reduction and both the osmotic pressure and the toxicity of the single ions played key roles in the overall inhibition of denitrification. Eventually, both autotrophic and heterotrophic denitrification showed potential for the treatment of a saline wastewater from a NOx-SO2 removal scrubber from a pulp mill.

2.
Waste Manag ; 87: 464-471, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-31109547

ABSTRACT

The treatment of the fine fraction (FF) obtained from landfill mining is necessary in order to reduce the amount of organic matter and biological activity in FF, thus increasing its potential to be utilized after landfill mining. This paper suggests the scaled up anaerobic and aerobic treatment of FF, with or without continuous irrigation, and presents the mass balance and cost structure of such treatment based on two hypothetical landfills. The physical treatment structure for the treatment of FF should prevent emissions, and in this paper, it includes suitable bottom and top liners as well as the collection and treatment of the gaseous and leachate emissions formed during the treatment. Methane produced in anaerobic treatments could either be utilized for energy recovery or be flared. The cost of the anaerobic and aerobic treatment of FF, including investments and operation costs, are 20-65 €/t FF, depending on size of the landfill. The costs of anaerobic treatment and passive aeration are similar, and active aeration is slightly more expensive, but the cost of the continuous irrigation is the most significant, as it multiplies the leachate treatment costs. The overall cost of treatment could be lowered by reducing the treatment time and utilizing existing landfill structures. The results of this paper can be used in planning and estimating the cost of the biological treatment of FF when evaluating landfill mining projects, as the fate of FF may have a major impact on the economics of landfill mining projects.


Subject(s)
Refuse Disposal , Water Pollutants, Chemical , Gases , Methane , Mining , Waste Disposal Facilities
3.
Waste Manag ; 60: 739-747, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27865763

ABSTRACT

Increasing interest for the landfill mining and the amount of fine fraction (FF) in landfills (40-70% (w/w) of landfill content) mean that sustainable treatment and utilization methods for FF are needed. For this study FF (<20mm) was mined from a municipal solid waste (MSW) landfill operated from 1967 to 1989. FF, which resembles soil, was stabilized in laboratory scale reactors in two phases: first, anaerobically for 101days and second, for 72days using four different methods: anaerobic with the addition of moisture (water) or inoculum (sewage sludge) and aerobic with continuous water washing, with, or without, bulking material. The aim was to evaluate the effect on the stability of mined FF, which has been rarely reported, and to study the quality and quantity of gas and leachate produced during the stabilization experiment. The study showed that aerobic treatment reduced respiration activity (final values 0.9-1.1mgO2/gTS) and residual methane potential (1.1LCH4/kgTS) better than anaerobic methods (1.8-2.3mg O2/g TS and 1.3-2.4L CH4/kg TS, respectively). Bulking material mixed in FF in one aerobic reactor had no effect on the stability of FF. The benefit of anaerobic treatment was the production of methane, which could be utilized as energy. Even though the inoculum addition increased methane production from FF about 30%, but the methane production was still relatively low (in total 1.5-1.7L CH4/kg TS). Continuous water washing was essential to remove leachable organic matter and soluble nutrients from FF, while increasing the volume of leachate collected. In the aerobic treatment, nitrogen was oxidized into nitrite and nitrate and then washed out in the leachate. Both anaerobic and aerobic methods could be used for FF stabilization. The use of FF, in landscaping for example, is possible because its nutrient content (4gN/kg TS and 1g P/kg TS) can increase the nutrient content of soil, but this may have limitations due to the possible presence of heavy metal and other contaminants.


Subject(s)
Mining/methods , Waste Disposal Facilities , Aerobiosis , Anaerobiosis , Biological Oxygen Demand Analysis , Carbon Dioxide/metabolism , Finland , Gases , Laboratories , Methane/biosynthesis , Sewage , Water Pollutants, Chemical/analysis
4.
Bioresour Technol ; 225: 299-307, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27898321

ABSTRACT

Organic compound rich torrefaction condensate, owing to their high water content and acidic nature, have yet to be exploited for practical application. In this study, microbial conversion of torrefaction condensate from pine wood through anaerobic batch digestion (AD) to produce methane was evaluated. Torrefaction condensate exhibited high methane potentials in the range of 430-492mL/g volatile solids (VS) and 430-460mL/gVS under mesophilic and thermophilic conditions, respectively. Owing to the changes in the composition, the methane yields differed with the torrefaction condensates produced at different temperatures (225, 275 and 300°C), with a maximum of 492±18mL/gVS with the condensate produced at 300°C under mesophilic condition. The cyclic batch AD experiments showed that 0.1VSsubstrate:VSinoculum is optimum, whereas the higher substrate loading (0.2-0.5) resulted in a reversible inhibition of the methane production. The results suggest that torrefaction condensate could be practically valorized through AD.


Subject(s)
Bioreactors , Methane , Pinus/chemistry , Wood/chemistry , Anaerobiosis , Hot Temperature , Methane/analysis , Methane/biosynthesis , Methane/metabolism
5.
Environ Technol ; 37(17): 2172-82, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26804108

ABSTRACT

The objective was to demonstrate that a microbial whole cell biosensor, bioluminescent yeast, Saccharomyces cerevisiae (BMAEREluc/ERα) can be applied to detect overall estrogenic activity from fresh and stored human urine. The use of source-separated urine in agriculture removes a human originated estrogen source from wastewater influents, subsequently enabling nutrient recycling. Estrogenic activity in urine should be diminished prior to urine usage in agriculture in order to prevent its migration to soil. A storage period of 6 months is required for hygienic reasons; therefore, estrogenic activity monitoring is of interest. The method measured cumulative female hormone-like activity. Calibration curves were prepared for estrone, 17ß-estradiol, 17α- ethinylestradiol and estriol. Estrogen concentrations of 0.29-29,640 µg L(-1) were detectable while limit of detection corresponded to 0.28-35 µg L(-1) of estrogens. The yeast sensor responded well to fresh and stored urine and gave high signals corresponding to 0.38-3,804 µg L(-1) of estrogens in different urine samples. Estrogenic activity decreased during storage, but was still higher than in fresh urine implying insufficient storage length. The biosensor was suitable for monitoring hormonal activity in urine and can be used in screening anthropogenic estrogen-like compounds interacting with the receptor.


Subject(s)
Biological Assay/methods , Biosensing Techniques/methods , Estrogens/urine , Saccharomyces cerevisiae/chemistry , Adult , Biological Availability , Child , Estrogens/metabolism , Female , Humans , Limit of Detection , Male , Saccharomyces cerevisiae/metabolism , Wastewater , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/urine
6.
Environ Technol ; 37(17): 2189-98, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26804243

ABSTRACT

The behaviour of pharmaceuticals related to the human immunodeficiency virus treatment was studied in the liquid phase of source-separated urine during six-month storage at 20°C. Six months is the recommended time for hygienization and use of urine as fertilizer. Compounds were spiked in urine as concentrations calculated to appear in urine. Assays were performed with separate compounds and as therapeutic groups of antivirals, antibiotics and anti-tuberculotics. In addition, urine was amended either with faeces or urease inhibitor. The pharmaceutical concentrations were monitored from filtered samples with solid phase extraction and liquid chromatography. The concentration reductions of the studied compounds as such or with amendments ranged from less than 1% to more than 99% after six-month storage. The reductions without amendments were 41.9-99% for anti-tuberculotics; <52% for antivirals (except with 3TC 75.6%) and <50% for antibiotics. In assays with amendments, the reductions were all <50%. Faeces amendment resulted in similar or lower reduction than without it even though bacterial activity should have increased. The urease inhibitor prevented ureolysis and pH rise but did not affect pharmaceutical removal. In conclusion, removal during storage might not be enough to reduce risks associated with the studied pharmaceuticals, in which case other feasible treatment practises or urine utilization means should be considered.


Subject(s)
Anti-Bacterial Agents/urine , Antiviral Agents/urine , Female , Humans , Male , Specimen Handling , Time Factors
7.
Waste Manag ; 47(Pt A): 34-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25817722

ABSTRACT

A fine fraction (FF) was mined from two Finnish municipal solid waste (MSW) landfills in Kuopio (1- to 10-year-old, referred as new landfill) and Lohja (24- to 40-year-old, referred as old landfill) in order to characterize FF. In Kuopio the FF (<20mm) was on average 45±7% of the content of landfill and in Lohja 58±11%. Sieving showed that 86.5±5.7% of the FF was smaller than 11.2mm and the fraction resembled soil. The total solids (TS) content was 46-82%, being lower in the bottom layers compared to the middle layers. The organic matter content (measured as volatile solids, VS) and the biochemical methane potential (BMP) of FF were lower in the old landfill (VS/TS 12.8±7.1% and BMP 5.8±3.4 m(3)CH4/t TS) than in the new landfill (VS/TS 21.3±4.3% and BMP 14.4±9.9 m(3)CH4/t TS), and both were lower compared with fresh MSW. In the Kuopio landfill materials were also mechanically sieved in the full scale plant in two size fraction <30 mm (VS/TS 31.1% and 32.9 m(3)CH4/t TS) and 30-70 mm (VS/TS 50.8% and BMP 78.5m(3)CH4/t TS). The nitrogen (3.5±2.0 g/kg TS), phosphorus (<1.0-1.5 g/kg TS) and soluble chemical oxygen demand (COD) (2.77±1.77 kg/t TS) contents were low in all samples. Since FF is major fraction of the content of landfill, the characterization of FF is important to find possible methods for using or disposing FF mined from landfills.


Subject(s)
Methane/analysis , Mining , Solid Waste/analysis , Waste Disposal Facilities , Waste Management/methods , Finland , Refuse Disposal
8.
Waste Manag ; 45: 468-75, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26162904

ABSTRACT

Fine fraction (FF, <20 mm) from mined landfill was stabilized in four laboratory-scale leach bed reactors (LBR) over 180 days. The aim was to study feasibility of biotechnological methods to treat FF and if further stabilization of FF is possible. Four different stabilization methods were compared and their effects upon quality of FF were evaluated. Also during the stabilization experiment, leachate quality as well as gas composition and quantity were analyzed. The methods studied included three anaerobic LBRs (one without water addition, one with water addition, and one with leachate recirculation) and one aerobic LBR (with water addition). During the experiment, the most methane was produced in anaerobic LBR without water addition (18.0 L CH4/kg VS), while water addition and leachate recirculation depressed methane production slightly, to 16.1 and 16.4 L CH4/kg VS, respectively. Organic matter was also removed via the leachate and was measured as chemical oxygen demand (COD). Calculated removal of organic matter in gas and leachate was highest in LBR with water addition (59 g COD/kg VS), compared with LBR without water addition or with leachate recirculation (51 g COD/kg VS). Concentrations of COD, ammonium nitrogen and anions in leachate decreased during the experiment, indicating washout mechanism caused by water additions. Aeration increased sulfate and nitrate concentrations in leachate due to oxidized sulfide and ammonium. Molecular weight distributions of leachates showed that all the size categories decreased, especially low molecular weight compounds, which were reduced the most. Aerobic stabilization resulted in the lowest final VS/TS (13.1%), lowest respiration activity (0.9-1.2 mg O2/g TS), and lowest methane production after treatment (0.0-0.8 L CH4/kg VS), with 29% of VS being removed from FF. Anaerobic stabilization methods also reduced organic matter by 9-20% compared with the initial amount. Stabilization reduced the quantity of soluble nitrogen in FF and did not alter concentration of soluble and insoluble phosphorus, and insoluble nitrogen. All four stabilization methods decreased organic matter and thus are possible stabilization methods for FF, but aerobic treatment was the most efficient in this study.


Subject(s)
Air Pollutants/analysis , Bioreactors , Mining/methods , Waste Disposal Facilities , Waste Management/methods , Water Pollutants, Chemical/analysis , Aerobiosis , Anaerobiosis , Gases/analysis , Particle Size
9.
Environ Technol ; 36(5-8): 681-92, 2015.
Article in English | MEDLINE | ID: mdl-25242545

ABSTRACT

Granular activated carbon (GAC) filtration enhances the removal of natural organic matter and micropollutants in drinking water treatment. Microbial communities in GAC filters contribute to the removal of the biodegradable part of organic matter, and thus help to control microbial regrowth in the distribution system. Our objectives were to investigate bacterial community dynamics, identify the major bacterial groups, and determine the concentration of active bacterial biomass in full-scale GAC filters treating cold (3.7-9.5°C), physicochemically pretreated, and ozonated lake water. Three sampling rounds were conducted to study six GAC filters of different operation times and flow modes in winter, spring, and summer. Total organic carbon results indicated that both the first-step and second-step filters contributed to the removal of organic matter. Length heterogeneity analysis of amplified 16S rRNA genes illustrated that bacterial communities were diverse and considerably stable over time. α-Proteobacteria, ß-Proteobacteria, and Nitrospira dominated in all of the GAC filters, although the relative proportion of dominant phylogenetic groups in individual filters differed. The active bacterial biomass accumulation, measured as adenosine triphosphate, was limited due to low temperature, low flux of nutrients, and frequent backwashing. The concentration of active bacterial biomass was not affected by the moderate seasonal temperature variation. In summary, the results provided an insight into the biological component of GAC filtration in cold water temperatures and the operational parameters affecting it.


Subject(s)
Cold Temperature , Microbial Consortia , Water Purification , Biodiversity , Biomass , Carbon , Filtration , Water Quality
10.
Biodegradation ; 18(6): 769-82, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17372705

ABSTRACT

In the current study, the microbial ecology of weathered hydrocarbon and heavy metal contaminated soil undergoing phytoremediation was studied. The relationship of functional diversity, measured as carbon source utilisation in Biolog plates and extracellular enzymatic activities, and genetic diversity of bacteria was evaluated. Denaturing gradient gel electrophoresis was used for community analyses at the species level. Bulk soil and rhizosphere soil from pine and poplar plantations were analysed separately to determine if the plant rhizosphere impacted hydrocarbon degradation. Prevailing microbial communities in the field site were both genetically and metabolically diverse. Furthermore, both tree rhizosphere and fertilisation affected the compositions of these communities and increased activities of extracellular aminopeptidases. In addition, the abundance of alkane hydroxylase and naphthalene dioxygenase genes in the communities was low, but the prevalence of these genes was increased by the addition of bioavailable hydrocarbons. Tree rhizosphere communities had greater hydrocarbon degradation potential than those of bulk soil. Hydrocarbon utilising communities were dominated generally by the species Ralstonia eutropha and bacteria belonging to the genus Burkholderia. Despite the presence of viable hydrocarbon-degrading microbiota, decomposition of hydrocarbons from weathered hydrocarbon contaminated soil over four years, regardless of the presence of vegetation, was low in unfertilised soil. Compost addition enhanced the removal of hydrocarbons.


Subject(s)
Hydrocarbons/metabolism , Metals, Heavy/metabolism , Phylogeny , Populus/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Weather , Aminopeptidases/metabolism , Bacteria/enzymology , Bacteria/genetics , Biodegradation, Environmental , Cluster Analysis , Cytochrome P-450 CYP4A/genetics , Dioxygenases , Gas Chromatography-Mass Spectrometry , Gasoline , Multienzyme Complexes/genetics , Oxygenases/genetics , Substrate Specificity
11.
Biodegradation ; 16(1): 91-101, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15727158

ABSTRACT

The effects of trees and contamination on microbial metabolic activity, especially that of hydrocarbon degrading bacteria, were compared during phytoremediation to find which conditions increase diesel fuel removal. Diesel fuel utilisation, microbial extracellular enzyme activities and utilisation of Biolog ECO plate carbon sources by soil bacteria were determined during phytoremediation experiments consisting of two separate diesel applications. Diesel fuel removal after 28 days of second diesel application was 20-30% more than after the first application 1 year earlier. Soil microbiota utilised 26-31 of the 31 Biolog ECO plate carbon sources. Carbon source utilisation profiles indicated minor differences in microbiota in soil vegetated with pine compared to microbiota in soil vegetated with poplar. The potential maximum rates of aminopeptidase activity were 10-10(2) microM AMC/h/g dry soil prior to and after second diesel application, except 14 days after the second diesel addition, where the rates were at the scale of 10(3) microM AMC/h/g dry soil. The potential maximum rates of esterase activity were 10(3)-10(4) microM MUF/h/g dry soil. The presence of plants did not influence the activity of esterases. The utilisation of diesel by soil bacteria in Biolog MT2 plate assay was higher in contaminated soil, especially when vegetated, than in uncontaminated soil, measured both as lag times and maximum specific utilisation rates. MT2 plate assay detected the biological response after diesel fuel addition better than general activity methods.


Subject(s)
Gasoline , Plants/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Biodegradation, Environmental
12.
Bioresour Technol ; 84(3): 221-8, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12118697

ABSTRACT

The effects of several plant species, native to northern latitudes, and different soil amendments, on diesel fuel removal from soil were studied. Plant treatments included Scots Pine (Pinus sylvestris), Poplar (Populus deltoides x Wettsteinii), a grass mixture (Red fescue, Fesuca rubra; Smooth meadowgrass, Poa pratensis and Perennial ryegrass, Lolium perenne) and a legume mixture (White clover, Trifolium repens and Pea, Pisum sativum). Soil amendments included NPK fertiliser, a compost extract and a microbial enrichment culture. Diesel fuel disappeared more rapidly in the legume treatment than in other plant treatments. The presence of poplar and pine enhanced removal of diesel fuel, but removal under grass was similar to that with no vegetation. Soil amendments did not enhance diesel fuel removal significantly. Grass roots accumulated diesel-range compounds. This study showed that utilisation of selected plants accelerates removal of diesel fuel in soil and may serve as a viable, low-cost remedial technology for diesel-contaminated soils in subarctic regions.


Subject(s)
Biodegradation, Environmental , Hydrocarbons/metabolism , Petroleum , Plant Development , Plant Roots/growth & development , Soil Pollutants/metabolism , Arctic Regions , Carbon Dioxide/analysis , Environmental Pollution/analysis , Environmental Pollution/prevention & control , Hydrocarbons/adverse effects , Hydrocarbons/analysis , Hydrogen-Ion Concentration , Lolium/growth & development , Pisum sativum/growth & development , Petroleum/adverse effects , Petroleum/analysis , Pinus/growth & development , Plant Roots/drug effects , Soil/analysis , Soil Pollutants/analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...