Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(45): e2302554, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37406283

ABSTRACT

Relaxor ferroelectrics (RFEs) are being actively investigated for energy-storage applications due to their large electric-field-induced polarization with slim hysteresis and fast energy charging-discharging capability. Here, a novel nanograin engineering approach based upon high kinetic energy deposition is reported, for mechanically inducing the RFE behavior in a normal ferroelectric Pb(Zr0.52 Ti0.48 )O3 (PZT), which results in simultaneous enhancement in the dielectric breakdown strength (EDBS ) and polarization. Mechanically transformed relaxor thick films with 4 µm thickness exhibit an exceptional EDBS of 540 MV m-1 and reduced hysteresis with large unsaturated polarization (103.6 µC cm-2 ), resulting in a record high energy-storage density of 124.1 J cm-3 and a power density of 64.5 MW cm-3 . This fundamental advancement is correlated with the generalized nanostructure design that comprises nanocrystalline phases embedded within the amorphous matrix. Microstructure-tailored ferroelectric behavior overcomes the limitations imposed by traditional compositional design methods and provides a feasible pathway for realization of high-performance energy-storage materials.

2.
Adv Mater ; 35(32): e2303553, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37199707

ABSTRACT

Magnetoelectric (ME) film composites consisting of piezoelectric and magnetostrictive materials are promising candidates for application in magnetic field sensors, energy harvesters, and ME antennas. Conventionally, high-temperature annealing is required to crystallize piezoelectric films, restricting the use of heat-sensitive magnetostrictive substrates that enhance ME coupling. Herein, a synergetic approach is demonstrated for fabricating ME film composites that combines aerosol deposition and instantaneous thermal treatment based on intense pulsed light (IPL) radiation to form piezoelectric Pb(Zr,Ti)O3 (PZT) thick films on an amorphous Metglas substrate. IPL rapidly anneals PZT films within a few milliseconds without damaging the underlying Metglas. To optimize the IPL irradiation conditions, the temperature distribution inside the PZT/Metglas film is determined using transient photothermal computational simulation. The PZT/Metglas films are annealed using different IPL pulse durations to determine the structure-property relationship. IPL treatment results in an enhanced crystallinity of the PZT, thus improving the dielectric, piezoelectric, and ME properties of the composite films. An ultrahigh off-resonance ME coupling (≈20 V cm-1  Oe-1 ) is obtained for the PZT/Metglas film that is IPL annealed at a pulse width of 0.75 ms (an order of magnitude higher than that reported for other ME films), confirming the potential for next-generation, miniaturized, and high-performance ME devices.

3.
ACS Appl Mater Interfaces ; 10(38): 32323-32330, 2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30168328

ABSTRACT

We report the effect of epoxy adhesion layers with different mechanical or physical property on a magnetoelectric (ME) composite laminate composed of FeBSi alloy (Metglas)/single-crystal Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3/Metglas to achieve an improved ME conversion performance. Through theoretical simulation, it was revealed that the Young's modulus and the thickness of interfacial adhesives were major parameters that influence the conversion efficiency in ME composites. In the experimental evaluation, we utilized three epoxy materials with a distinct Young's modulus and adjusted the average thickness of the adhesion layers to optimize the ME conversion. The experimental results show that a thin epoxy layer with a high Young's modulus provided the best performance in the inorganic-based ME conversion process. By tailoring the interfacial adhesion property, the ME laminate generated a high conversion coefficient of 328.8 V/(cm Oe), with a mechanical quality factor of 132.0 at the resonance mode. Moreover, we demonstrated a highly sensitive alternating current magnetic field sensor that had a detection resolution below 10 pT. The optimization of the epoxy layers in the ME laminate composite provided significant enhancement of the ME response in a simple manner.

4.
ACS Appl Mater Interfaces ; 10(24): 20720-20727, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29856200

ABSTRACT

Dielectric ceramic film capacitors, which store energy in the form of electric polarization, are promising for miniature pulsed power electronic device applications. For a superior energy storage performance of the capacitors, large recoverable energy density, along with high efficiency, high power density, fast charge/discharge rate, and good thermal/fatigue stability, is desired. Herein, we present highly dense lead-free 0.942[Na0.535K0.480NbO3]-0.058LiNbO3 (KNNLN) ferroelectric ceramic thick films (∼5 µm) demonstrating remarkable energy storage performance. The nanocrystalline KNNLN thick film fabricated by aerosol deposition (AD) process and annealed at 600 °C displayed a quasi-relaxor ferroelectric behavior, which is in contrast to the typical ferroelectric nature of the KNNLN ceramic in its bulk form. The AD film exhibited a large recoverable energy density of 23.4 J/cm3, with an efficiency of over 70% under the electric field of 1400 kV/cm. Besides, an ultrahigh power density of 38.8 MW/cm3 together with a fast discharge speed of 0.45 µs, good fatigue endurance (up to 106 cycles), and thermal stability in a wide temperature range of 20-160 °C was also observed. Using the AD process, we could make a highly dense microstructure of the film containing nano-sized grains, which gave rise to the quasi-relaxor ferroelectric characteristics and the remarkable energy storage properties.

5.
Adv Mater ; 30(14): e1705148, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29411432

ABSTRACT

Recent technological advances in developing a diverse range of lasers have opened new avenues in material processing. Laser processing of materials involves their exposure to rapid and localized energy, which creates conditions of electronic and thermodynamic nonequilibrium. The laser-induced heat can be localized in space and time, enabling excellent control over the manipulation of materials. Metal oxides are of significant interest for applications ranging from microelectronics to medicine. Numerous studies have investigated the synthesis, manipulation, and patterning of metal oxide films and nanostructures. Besides providing a brief overview on the principles governing the laser-material interactions, here, the ongoing efforts in laser irradiation of metal oxide films and nanostructures for a variety of applications are reviewed. Latest advances in laser-assisted processing of metal oxides are summarized.

6.
ACS Appl Mater Interfaces ; 10(13): 11018-11025, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29309126

ABSTRACT

Enhanced and self-biased magnetoelectric (ME) coupling is demonstrated in a laminate heterostructure comprising 4 µm-thick Pb(Zr,Ti)O3 (PZT) film deposited on 50 µm-thick flexible nickel (Ni) foil. A unique fabrication approach, combining room temperature deposition of PZT film by granule spray in vacuum (GSV) process and localized thermal treatment of the film by laser radiation, is utilized. This approach addresses the challenges in integrating ceramic films on metal substrates, which is often limited by the interfacial chemical reactions occurring at high processing temperatures. Laser-induced crystallinity improvement in the PZT thick film led to enhanced dielectric, ferroelectric, and magnetoelectric properties of the PZT/Ni composite. A high self-biased ME response on the order of 3.15 V/cm·Oe was obtained from the laser-annealed PZT/Ni film heterostructure. This value corresponds to a ∼2000% increment from the ME response (0.16 V/cm·Oe) measured from the as-deposited PZT/Ni sample. This result is also one of the highest reported values among similar ME composite systems. The tunability of self-biased ME coupling in PZT/Ni composite has been found to be related to the demagnetization field in Ni, strain mismatch between PZT and Ni, and flexural moment of the laminate structure. The phase-field model provides quantitative insight into these factors and illustrates their contributions toward the observed self-biased ME response. The results present a viable pathway toward designing and integrating ME components for a new generation of miniaturized tunable electronic devices.

7.
Adv Mater ; 29(10)2017 Mar.
Article in English | MEDLINE | ID: mdl-28067958

ABSTRACT

A record-high, near-theoretical intrinsic magnetoelectric (ME) coupling of 7 V cm-1 Oe-1 is achieved in a heterostructure of piezoelectric Pb(Zr,Ti)O3 (PZT) film deposited on magnetostrictive Metglas (FeBSi). The anchor-like, nanostructured interface between PZT and Metglas, improved crystallinity of PZT by laser annealing, and optimum volume of crystalline PZT are found to be the key factors in realizing such a giant strain-mediated ME coupling.

SELECTION OF CITATIONS
SEARCH DETAIL
...