Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Thyroid ; 1(3): 257-66, 1991.
Article in English | MEDLINE | ID: mdl-1668617

ABSTRACT

The hyt/hyt mouse has a severe and pervasive primary inherited hypothyroidism with significantly depressed serum T4, elevated serum and pituitary TSH, and reduced thyroid gland iodide uptake. Previous ultrastructural and histologic analysis of the hyt/hyt thyroid gland along with these biochemical abnormalities support an inherited defect in TSH responsiveness of the hyt/hyt thyroid gland. In order to evaluate the potential site of the defect in the hyt/hyt mouse, we have studied the hyt/hyt gland and hyt/hyt TSH from a biochemical and molecular standpoint. Based on demonstrated bioactivity of hyt/hyt serum in the McKenzie bioassay, this reduced responsiveness to TSH in the hyt/hyt mouse is not due to reduced bioactivity of hyt/hyt TSH or a major structural abnormality in the hyt/hyt TSH molecule. In comparison to hyt/ + euthyroid littermates and +/+ BALB/cBY progenitor strain mice, the hyt/hyt mouse demonstrates a twofold reduction in thyroid gland basal cAMP and a markedly diminished response of adenylyl cyclase to exogenous TSH. However, hyt/hyt cAMP production is equivalent to the euthyroid mice after stimulation of thyroid glands by forskolin, cholera toxin, PGE1, and isoproterenol. These results support a defect in the TSH-G protein-adenylyl cyclase system in the hyt/hyt thyroid gland. Specifically, these findings suggest that the hyt/hyt mouse has a defect in TSH responsivity due to an inherited defect in the thyroid gland TSH receptor molecule. Since the hyt/hyt gland makes T3 and T4 but at diminished levels, the proposed defect in the TSH receptor would still impart partial function. Both hyt/hyt and euthyroid hyt/ + littermates make TSH receptor mRNAs of 5500 and 2400 base pairs. This suggests that the receptor defect does not represent a major structural abnormality of the gene. The receptor defect could represent a reduction in receptor number, receptor-TSH affinity, or TSH receptor-G protein coupling. The specificity of this effect on adenylyl cyclase-cAMP is shown by the reduction of TSH-cAMP regulated thyroid peroxidase (TPO) and thyroglobulin mRNAs in the hyt/hyt thyroid gland. Given the importance of TPO and thyroglobulin in normal thyroid hormone synthesis, the reductions in TPO and thyroglobulin mRNAs in the hyt/hyt thyroid gland may underlie the significant decrease in thyroid hormone production by the hyt/hyt mouse.


Subject(s)
GTP-Binding Proteins/physiology , Hypothyroidism/genetics , Receptors, Thyrotropin/physiology , Thyroid Gland/metabolism , Adenylyl Cyclases/metabolism , Animals , Base Sequence , Blotting, Northern , Cyclic AMP/biosynthesis , Mice , Mice, Inbred Strains , Molecular Sequence Data , Nucleic Acid Hybridization , RNA, Messenger/analysis , Thyroglobulin/blood , Thyrotropin/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...