Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36014457

ABSTRACT

Oxidative stress has been proposed to be a pathogenic mechanism to induce endothelial dysfunction and the onset of cardiovascular disease. Elevated levels of free fatty acids can cause oxidative stress by increasing mitochondrial uncoupling but, at physiological concentrations, they are essential for cell and tissue function and olive oil free fatty acids have proved to exhibit beneficial effects on risk factors for cardiovascular disease. We hypothesize that realistic concentrations within the physiological range of oleic (OA) and palmitic (PA) acids could be beneficial in the prevention of oxidative stress in vascular endothelium. Hence, pre-treatment and co-treatment with realistic physiological doses of palmitic and oleic acids were tested on cultured endothelial cells submitted to a chemically induced oxidative stress to investigate their potential chemo-protective effect. Cell viability and markers of oxidative status: reactive oxygen species (ROS), reduced glutathione (GSH), malondialdehyde (MDA), glutathione peroxidase (GPx) and glutathione reductase (GR) were evaluated. As a conclusion, the increased ROS generation induced by stress was significantly prevented by a pre- and co-treatment with PA or OA. Moreover, pre- and co-treatment of cells with FFAs recovered the stress-induced MDA concentration to control values and significantly recovered depleted GSH and normalized GPx and GR activities. Finally, pre- and co-treatment of cells with physiological concentrations of PA or OA in the low micromolar range conferred a substantial protection of cell viability against an oxidative insult.


Subject(s)
Endothelial Cells , Palmitic Acids , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Fatty Acids, Nonesterified/pharmacology , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Humans , Oxidative Stress , Palmitic Acids/pharmacology , Reactive Oxygen Species/pharmacology
2.
Planta Med ; 87(5): 383-394, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33007786

ABSTRACT

Tropaeolum tuberosum, commonly known as Mashua, is an herbal remedy used in traditional Andean medicine for the relief of kidney and bladder pain, as well as contusions. This study aimed to evaluate the fractions and isolated compounds from T. tuberosum with analgesic activity mediated by the transient receptor potential vanilloid-1 receptor. A bioguided phytochemical analysis based on NMR/MS was performed to identify the compounds of the n-heptane fractions from samples of purple tubers of T. tuberosum. The transient receptor potential vanilloid-1 agonist and antagonist activity were assessed through the measurement of intracellular Ca2+ in HEK001 cells. The chemical structure determination led to the identification of two alkamides: N-(2-hydroxyethyl)-7Z,10Z,13Z,16Z-docosatetraenamide (1: ) and N-oleoyldopamine (2: ). Both compounds induced increased intracellular calcium flow with IC50 values of 3.2 nM and 7.9 nM, respectively, thus activating the transient receptor potential vanilloid-1 receptor. Our research is the first report to show that these two compounds isolated from T. tuberosum can act as agonists of the transient receptor potential vanilloid-1 receptor, providing scientific evidence for the traditional use of this species in pain relief.


Subject(s)
Keratinocytes , Plant Tubers , TRPV Cation Channels , Tropaeolum , Analgesics , Capsaicin , Humans , Ion Channels , Keratinocytes/drug effects
3.
Plant Foods Hum Nutr ; 75(2): 161-168, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32185628

ABSTRACT

Oxidative stress may cause functional disorders of vascular endothelia which can lead to endothelial apoptosis and thus alter the function and structure of the vascular tissues. Plant antioxidants protect the endothelium against oxidative stress and then become an effective option to treat vascular diseases. Cocoa flavanols have been proven to protect against oxidative stress in cell culture and animal models. In addition, epidemiological and interventional studies strongly suggest that cocoa consumption has numerous beneficial effects on cardiovascular health. The objective of this study was to test the chemo-protective effect of realistic concentrations of a cocoa phenolic extract and its main monomeric flavanol epicatechin on cultured human endothelial cells submitted to an oxidative challenge. Both products efficiently restrained stress-induced reactive oxygen species and biomarkers of oxidative stress such as carbonyl groups and malondialdehyde, and recovered depleted glutathione, antioxidant defences and cell viability. Our results demonstrate for the first time that a polyphenolic extract from cocoa and its main flavonoid protect human endothelial cells against an oxidative insult by modulating oxygen radical generation and antioxidant enzyme and non-enzyme defences.


Subject(s)
Cacao , Endothelial Cells , Animals , Endothelium , Humans , Oxidative Stress , Polyphenols
4.
Planta Med ; 85(17): 1304-1315, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31234214

ABSTRACT

Natural products and their derivatives represent the most consistently successful source of drug leads. Terpenoids, a structurally diverse group, are secondary metabolites widely distributed in nature, endowed with a wide range of biological activities such as antibacterial, anti-inflammatory, antitumoral, or neuroprotective effects, which consolidate their therapeutic value. During the last decades, and taking into consideration the prevalence of aging-related diseases, research activity into the neuroprotective effects of these types of compounds has increased enormously. Several signaling pathways involved in neuroprotection are targets of their mechanism of action and mediate their pleiotropic protective activity in neuronal cell damage. In the present review, molecular basis of the neuroprotection exerted by terpenoids is presented, focusing on preclinical evidence of the therapeutic potential of diterpenoids and triterpenoids on neurodegenerative disorders. By acting on diverse mechanisms simultaneously, terpenoids have been emphasized as promising multitarget agents.


Subject(s)
Neuroprotective Agents/pharmacology , Terpenes/pharmacology , Animals , Drug Delivery Systems , Humans , Neurodegenerative Diseases/drug therapy
5.
Medicines (Basel) ; 4(1)2017 Feb 21.
Article in English | MEDLINE | ID: mdl-28930225

ABSTRACT

Background: Increased oxidative stress by persistent hyperglycemia is a widely accepted factor in vascular damage responsible for type 2 diabetes complications. The plant Vochysia rufa (Vr) has been used in folk medicine in Brazil for the treatment of diabetes. Thus; the protective effect of a Vr stem bark extract against a challenge by a high glucose concentration on EA.hy926 (EA) endothelial cells is evaluated. Methods: Vegetal material is extracted with distilled water by maceration and evaporated until dryness under vacuum. Then; it is isolated by capillary electrophoresis-tandem mass spectrometry. Cell viability is evaluated on EA cells treated with 0.5-100 µg/mL of the Vr extract for 24 h. The extract is diluted at concentrations of 5, 10 and 25 µg/mL and maintained for 24 h along with 30 mM of glucose to evaluate its protective effect on reduced glutathione (GSH); glutathione peroxidase (GPx) and reductase (GR) and protein carbonyl groups. Results:V. rufa stem bark is composed mainly of sugars; such as inositol; galactose; glucose; mannose; sacarose; arabinose and ribose. Treatment with Vr up to 100 µg/mL for 24 h did not affect cell viability. Treatment of EA cells with 30 mM of glucose for 24 h significantly increased the cell damage. EA cells treated with 30 mM of glucose showed a decrease of GSH concentration and increased Radical Oxygen Species (ROS) and activity of antioxidant enzymes and protein carbonyl levels; compared to control. Co-treatment of EA with 30 mM glucose plus 1-10 µg/mL Vr significantly reduced cell damage while 5-25 µg/mL Vr evoked a significant protection against the glucose insult; recovering ROS; GSH; antioxidant enzymes and carbonyls to baseline levels. Conclusion:V. rufa extract protects endothelial cells against oxidative damage by modulating ROS; GSH concentration; antioxidant enzyme activity and protein carbonyl levels.

6.
Planta Med ; 83(1-02): 97-103, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27525510

ABSTRACT

Silybum marianum Gaertn. (Milk thistle) has been used since ancient times for the relief of liver diseases characterized by intense oxidative stress such as inflammatory liver disease and cirrhosis. As oxidative stress by hyperglycemia is involved in micro- and macrovascular complications of type 2 diabetes, our aim was to assess the protective effect of milk thistle seed extract against oxidative stress induced by a high glucose concentration on endothelial cells (EA.hy926 cells). High-performance liquid chromatographic analysis shows flavonolignans silychristin and silibinin A and B as major components. No cell toxicity was observed for concentrations up to 100 µg/mL of milk thistle extract for 24 h. Concentrations of 5-25 µg/mL of the extract were used to assess the protective effect on EA.hy926 cells treated with 30 mM glucose for 24 h. Oxidative damage by 30 mM glucose was shown as a significant decrease in reduced glutathione and a significant increase in protein carbonyls and antioxidant enzyme activities. S. marianum extract recovered reduced glutathione and balanced the elevated carbonyls and enzyme activity. Silibinin alone also recovered reduced glutathione and antioxidant enzymes. S. marianum protects endothelial cell against oxidative damage by modulating antioxidant enzyme activity, reduced glutathione, and protein carbonyl levels.


Subject(s)
Antioxidants/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Protective Agents/pharmacology , Silybum marianum/chemistry , Silymarin/pharmacology , Antioxidants/analysis , Antioxidants/isolation & purification , Cell Line , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Glucose/adverse effects , Glutathione/metabolism , Humans , Oxidative Stress/drug effects , Protective Agents/analysis , Protective Agents/isolation & purification , Silybin , Silymarin/analysis , Silymarin/chemistry , Silymarin/isolation & purification
7.
Food Chem ; 138(1): 547-55, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23265523

ABSTRACT

Legumes are the basés diet in several countries. They hold a high nutritional value, but other properties related to human health are nowadays being studied. The aim of this work was to study the influence of processes (boiling or germination) on the phenolic composition of dark beans (Phaseolus vulgaris L. c.v. Tolosana) and their effect on their antioxidant, neuroprotective and anticancer ability. Phenolic composition of raw and processed dark beans was analysed by HPLC-PAD and HPLC-ESI/MS. The antioxidant activity was evaluated by ORAC. Astrocytes cultures (U-373) have been used to test their neuroprotective effect. Anticancer activities were evaluated on three different cell lines (renal adenocarcinoma (TK-10), breast adenocarcinoma (MCF-7) and melanoma (UACC-62)) by sulphorhodamine B method. Qualitative and quantitative differences in phenolic composition have been observed between raw and processed dark beans that influence the antioxidant activity, mainly for germinated samples which show a decrease of antioxidant capacity. Although every assayed extracts decreased reactive oxygen species release and exhibited cytotoxicity activities on cancer cell lines, raw beans proved to be the most active in neuroprotective and antitumoral effects; this sample is especially rich in phenolic compounds, mainly anthocyanins. This study further demonstrated that phenolic composition of dark beans is related with cooking process and so with their neuroprotective and anticancer activity; cooking of dark beans improves their digestion and absorption at intestinal level, while maintaining its protective ability on oxidative process at cellular level.


Subject(s)
Antineoplastic Agents, Phytogenic/analysis , Antioxidants/analysis , Germination , Neuroprotective Agents/analysis , Phaseolus/chemistry , Phenols/analysis , Plant Extracts/analysis , Antineoplastic Agents, Phytogenic/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Cell Line , Cooking , Humans , Neurons/drug effects , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Nutritive Value , Phaseolus/growth & development , Phaseolus/metabolism , Phenols/metabolism , Phenols/pharmacology , Plant Extracts/metabolism , Plant Extracts/pharmacology , Seeds/chemistry , Seeds/growth & development , Seeds/metabolism
8.
Plant Foods Hum Nutr ; 64(4): 238-43, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19821030

ABSTRACT

Phenolic composition of wine depends not only on the grape variety from which it is made, but on some external factors such as winemaking technology. Red wine possesses the most antioxidant effect because of its high polyphenolic content. The aim of this work is to study for the first time, the neuroprotective activity of four monovarietal Spanish red wines (Merlot (ME), Tempranillo (T), Garnacha (G) and Cabernet-Sauvignon (CS)) through its antioxidant ability, and to relate this neuroprotection to its polyphenolic composition, if possible. The wine effect on neuroprotection was studied through its effect as free radical scavenger against FeSO4, H2O2 and FeSO4 + H2O2. Effect on cell survival was determined by 3(4,5-dimethyltiazol-2-il)-2,5-diphenyltetrazolium reduction assay (MTT) and lactate dehydrogenase (LDH) release assay on astrocytes cultures. Results showed that most of the studied wine varieties induced neuroprotection through their antioxidant ability in astrocytes, Merlot being the most active; this variety is especially rich in phenolic compounds, mainly catechins and oligomeric proanthocyanidins. Our results show that red wine exerts a protection against oxidative stress generated by different toxic agents and that the observed neuroprotective activity is related to their polyphenolic content.


Subject(s)
Antioxidants/pharmacology , Astrocytes/drug effects , Flavonoids/pharmacology , Neuroprotective Agents/pharmacology , Phenols/pharmacology , Plant Extracts/pharmacology , Vitis/chemistry , Wine , Astrocytes/metabolism , Cell Survival/drug effects , Cells, Cultured , Fruit , Humans , L-Lactate Dehydrogenase/metabolism , Polyphenols
SELECTION OF CITATIONS
SEARCH DETAIL
...