Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 62(48): 19404-19411, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37978941

ABSTRACT

The preparation of a functional device based on a functionalized MIL-100(Fe) metal-organic framework for the solid-phase extraction of heavy metals is reported. By a simple and easy straightforward grafting procedure, a thiol-functionalized MIL-100(Fe) material (MIL-100(Fe)-SH) with a S/Fe ratio of 0.80 and a surface area of 840 m2 g-1 was obtained. MIL-100(Fe)-SH exhibited a higher Hg(II) extraction (96 ± 5%) than that of MIL-100(Fe) (78 ± 4%) due to the interaction between thiol groups and Hg(II) ions. For practical applications, the obtained MIL-100(Fe)-SH was integrated by a simple method to a 3D printed support based on a matrix of interconnected cubes using poly(vinylidene fluoride) as binder, obtaining a functional device that simultaneously acts as stirrer and sorbent. The developed device showed high efficiency for the removal of Hg(II), good reusability, and excellent performance for the simultaneous preconcentration and further detection and quantification of Hg(II), Pb(II), and As(V) in tap, well, and lake water samples.

2.
J Chromatogr A ; 1631: 461580, 2020 Nov 08.
Article in English | MEDLINE | ID: mdl-33007582

ABSTRACT

In this work, the synthesis of zeolitic imidazolate framework-8 (ZIF-8) crystals and their subsequent application as effective sorbents for extraction and preconcentration of several benzomercaptans from environmental complex samples is described. These materials were prepared by solvothermal approach varying the concentration of n-butylamine modulator to modify the surface of the metal-organic framework. The resulting materials were characterized by scanning and transmission electron microscopy, powder X-ray diffraction and Fourier transform infrared spectroscopy. The ZIF-8 material that gave the best features was selected as extractive phase and the influence of various parameters (sample pH and elution solvent composition, among others) on the extraction efficiency of target compounds were investigated. Under the optimal conditions of the method, the tested analytes (2-mercaptobenzothiazole, 2-mercaptobenzoxazole and 2-mercapto-6-nitrobenzothiazole) were retained and eluted quantitatively with alkaline 50:50 (v:v) methanol-water mixture. Using the proposed method, low limits of detection, in the range of 16-21 ng L-1 for aqueous samples and 0.4-0.5 µg kg-1 for soil samples, were achieved whereas the precision (expressed as relative standard deviation) was lower than 7%. The resulting solid-phase extraction protocol, using the zeolitic material as sorbent, was combined with liquid chromatography and ultraviolet-vis detector and successfully applied to determine traces of these organic pollutants in environmental samples.


Subject(s)
Metal-Organic Frameworks , Water Pollutants, Chemical , Zeolites , Chromatography, High Pressure Liquid , Solid Phase Extraction , Water Pollutants, Chemical/analysis
3.
Anal Chim Acta ; 1136: 157-167, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33081940

ABSTRACT

A solid-phase extraction methodology using a MIL-101(Fe)/PVDF membrane was proposed as a useful alternative for the simultaneous determination of naproxen, diclofenac, and ibuprofen, three anti-inflammatory drugs (NSAIDs), in wastewater samples by HPLC-CCD analysis. The MIL-101(Fe) was prepared by a rapid microwave-assisted method and supported in a polymeric PVDF membrane. The prepared material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FT-IR). The factors that affect the extraction of the NSAIDs using the MIL-101(Fe)/PVDF membrane as the sample volume, the solution pH and the elution solvent were studied in detail. The selected conditions were 50 mL of sample solution at pH 3 and 5 mL of methanol: acetone (30:70, v v-1) acidified with formic acid at 2% as elution solvent. The analytical method was linear with determination coefficients (r2 ≥ 0.998) in the calibration ranges from 2 to 100 ng mL-1 for naproxen, 20-200 ng mL-1 for diclofenac, and 100-300 ng mL-1 for ibuprofen. The intra and inter-day precision (repeatability and reproducibility, respectively) of the method (RSD%, n = 5) were lower than 4.8% and 7.1%, respectively. The accuracy reported as recovery percentages ranged from 82 to 118%, and the limits of detection were between 1.8 and 32.3 ng mL-1. Moreover, MIL-101(Fe)/PVDF membrane exhibited improved adsorption efficiency compared to that of its analog MIL-101(Cr)/PVDF and the pristine PVDF membranes, obtaining in an easy and rapid (60 min) way a low-cost and low-toxic adsorbent with excellent stability, reusability, mechanic resistance, and simple operation which shows excellent performance.


Subject(s)
Metal-Organic Frameworks , Pharmaceutical Preparations , Adsorption , Iron , Reproducibility of Results , Solid Phase Extraction , Spectroscopy, Fourier Transform Infrared
4.
Dalton Trans ; 49(26): 8959-8966, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32558858

ABSTRACT

In this work, the dispersive solid-phase extraction of sulfonamide antibiotics was evaluated using magnetic porous carbons derived from cobalt(ii)-based metal-organic frameworks. By direct carbonization under the inert atmosphere of Co-SIM-1, Co-MOF-74 and Co-DABCO MOFs, different magnetic porous carbons were prepared and characterized to study their structural, morphological, chemical and textural properties. Their performance for the simultaneous extraction of three sulfonamides (sulfadiazine, sulfamerazine and sulfamethazine), prior to HPLC analysis, was also evaluated, obtaining the best results (>95%) in the case of C/Co-SIM-1 carbon, probably due to its bimodal pore structure, high surface area and large amount of surface defects. Using this adsorbent, the effect of the solution pH and contact time on the adsorption of the sulfonamides, and the reusability of the carbon were studied.

5.
ACS Appl Mater Interfaces ; 12(5): 6419-6425, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31913595

ABSTRACT

The preparation of a hybrid magnetic metal-organic framework (MOF)@carbon from a MOF-derived porous carbon is reported. MOF-74(Co) is used as a precursor for the synthesis of a magnetic carbon with homogeneous cobalt particle distribution (C-MOF-74) by a direct carbonization step. The cobalt particles present in the carbon are partially converted to zeolitic imidazolate framework (ZIF)-67 by reaction with 2-methylimidazole to obtain a core-shell ZIF-67@C-MOF-74. The effect of the reaction time and 2-methylimidazole concentration in the conversion procedure is studied by X-ray diffraction and scanning microscopy. Because of its high surface area, dual porosity, and magnetic properties, ZIF-67@C-MOF-74 exhibits high extraction capacity (180 mg g-1), fast adsorption rate, and excellent recyclability for Congo red adsorption. In addition, the prepared material shows high efficiency in the extraction of different phenolic compounds. The developed procedure can be easily adapted to different carbons and MOFs, thus potentially enabling the preparation of a wide number of new hybrid materials.

6.
Photochem Photobiol Sci ; 18(4): 863-870, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30255911

ABSTRACT

A fully automated on-line system for monitoring the TiO2-based photocatalytic degradation of dimethyl phthalate (DMP) and diethyl phthalate (DEP) using sequential injection analysis (SIA) coupled to liquid chromatography (LC) with UV detection was proposed. The effects of the type of catalyst (sol-gel, Degussa P25 and Hombikat), the amount of catalyst (0.5, 1.0 and 1.5 g L-1), and the solution pH (4, 7 and 10) were evaluated through a three-level fractional factorial design (FFD) to verify the influence of the factors on the response variable (degradation efficiency, %). As a result of FFD evaluation, the main factor that influences the process is the type of catalyst. Degradation percentages close to 100% under UV-vis radiation were reached using the two commercial TiO2 materials, which present mixed phases (anatase/rutile), Degussa P25 (82%/18%) and Hombikat (76%/24%). 60% degradation was obtained using the laboratory-made pure anatase crystalline TiO2 phase. The pH and amount of catalyst showed minimum significant effect on the degradation efficiencies of DMP and DEP. Greater degradation efficiency was achieved using Degussa P25 at pH 10 with 1.5 g L-1 catalyst dosage. Under these conditions, complete degradation and 92% mineralization were achieved after 300 min of reaction. Additionally, a drastic decrease in the concentration of BOD5 and COD was observed, which results in significant enhancement of their biodegradability obtaining a BOD5/COD index of 0.66 after the photocatalytic treatment. The main intermediate products found were dimethyl 4-hydroxyphthalate, 4-hydroxy-diethyl phthalate, phthalic acid and phthalic anhydride indicating that the photocatalytic degradation pathway involved the hydrolysis reaction of the aliphatic chain and hydroxylation of the aromatic ring, obtaining products with lower toxicity than the initial molecules.

7.
J Sep Sci ; 41(9): 2012-2019, 2018 May.
Article in English | MEDLINE | ID: mdl-29377562

ABSTRACT

The application of layered double hydroxide-Al2 O3 -polymer mixed-matrix disks for solid-phase extraction is reported for the first time. Al2 O3 is embedded in a polymer matrix followed by an in situ metal-exchange process to obtain a layered double hydroxide-Al2 O3 -polymer mixed-matrix disk with excellent flow-through properties. The extraction performance of the prepared disks is evaluated as a proof of concept for the automated extraction using sequential injection analysis of organic acids (p-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, gallic acid) following an anion-exchange mechanism. After the solid-phase extraction, phenolic acids were quantified by reversed-phase high-performance liquid chromatography with diode-array detection using a core-shell silica-C18 stationary phase and isocratic elution (acetonitrile/0.5% acetic acid in pure water, 5:95, v/v). High sensitivity and reproducibility were obtained with limits of detection in the range of 0.12-0.25 µg/L (sample volume, 4 mL), and relative standard deviations between 2.9 and 3.4% (10 µg/L, n = 6). Enrichment factors of 34-39 were obtained. Layered double hydroxide-Al2 O3 -polymer mixed-matrix disks had an average lifetime of 50 extractions. Analyte recoveries ranged from 93 to 96% for grape juice and nonalcoholic beer samples.


Subject(s)
Aluminum Oxide/chemistry , Hydroxides/chemistry , Hydroxybenzoates/chemistry , Polymers/chemistry , Solid Phase Extraction , Automation , Beer/analysis , Chromatography, High Pressure Liquid , Fruit and Vegetable Juices/analysis , Limit of Detection , Microscopy, Electron, Scanning , Reproducibility of Results
8.
J Sep Sci ; 41(1): 262-287, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28985015

ABSTRACT

This review provides an update on the implementation of emerging materials as sorbents for sample preparation in combination with chromatographic separation. We have focused on recent applications of metal-organic frameworks, layered double hydroxides, porous carbons obtained from polymers or biomass precursors, and silicates (clays and zeolites). The review is directed toward the strategies followed by the authors to engineer suitable supports enabling the application of materials with unconventional size and shape as high-performance sorbents to explore new boundaries in sample pretreatment in manual or automated modes.

9.
J Chromatogr A ; 1488: 1-9, 2017 Mar 10.
Article in English | MEDLINE | ID: mdl-28168978

ABSTRACT

We present for the first time the application of metal-organic framework (MOF) mixed-matrix disks (MMD) for the automated flow-through solid-phase extraction (SPE) of environmental pollutants. Zirconium terephthalate UiO-66 and UiO-66-NH2 MOFs with different size (90, 200 and 300nm) have been incorporated into mechanically stable polyvinylidene difluoride (PVDF) disks. The performance of the MOF-MMDs for automated SPE of seven substituted phenols prior to HPLC analysis has been evaluated using the sequential injection analysis technique. MOF-MMDs enabled the simultaneous extraction of phenols with the concomitant size exclusion of molecules of larger size. The best extraction performance was obtained using a MOF-MMD containing 90nm UiO-66-NH2 crystals. Using the selected MOF-MMD, detection limits ranging from 0.1 to 0.2µgL-1 were obtained. Relative standard deviations ranged from 3.9 to 5.3% intra-day, and 4.7-5.7% inter-day. Membrane batch-to-batch reproducibility was from 5.2 to 6.4%. Three different groundwater samples were analyzed with the proposed method using MOF-MMDs, obtaining recoveries ranging from 90 to 98% for all tested analytes.


Subject(s)
Chromatography, High Pressure Liquid/methods , Metals/chemistry , Solid Phase Extraction/methods , Automation , Groundwater/chemistry , Limit of Detection , Microscopy, Electron, Scanning , Phenols/isolation & purification , Polyvinyls/chemistry , Reference Standards , Reproducibility of Results , Rhodamines/isolation & purification , Solvents , X-Ray Diffraction
10.
Anal Bioanal Chem ; 409(1): 225-234, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27815608

ABSTRACT

Herein, we propose for the first time the use of magnetic porous carbons (MPCs) derived from zeolitic imidazolate frameworks (ZIFs) for the automated in-syringe magnetic dispersive micro-solid phase extraction (D-µ-SPE) of environmental pollutants prior to their analysis using GC-MS. MPCs with dual porosity are obtained from the direct combustion of the ZIF-67, obtaining robust and magnetic porous carbons on the micrometer scale. As proof of concept, this material has been applied for the automated D-µ-SPE of estrogens (estrone, 17ß-estradiol, and 17α-ethynylestradiol) cataloged as Contaminants of Emergent Concern by the Environmental Protection Agency of the United States (US-EPA). The automation of the system provided a good precision given the low relative standard deviations (RSDs) obtained, ranging from 2.70 to 5.90 % for intra-day precision and from 4.6 to 9.55 % for inter-day precision. Furthermore, the clean-up and preconcentration of the sample is easy and quick, as the in-syringe magnetic D-µ-SPE is carried out in less than 20 min. The high porosity, magnetism, and good stability of the MPCs facilitated the automation of the SPE in dispersive mode enabling the analysis of samples with a complex matrix without backpressure or problems related with the clogging of the instrumentation conduits. The applicability of the method to wastewater samples has been demonstrated given the good recoveries attained ranging from 86 to 115 %. Graphical abstract In-syringe dispersive µ-SPE of estrogens using magnetic carbon microparticles prior GC-MS.


Subject(s)
Carbon/chemistry , Environmental Pollutants/isolation & purification , Estrogens/isolation & purification , Magnets/chemistry , Solid Phase Microextraction/instrumentation , Water Pollutants, Chemical/isolation & purification , Zeolites/chemistry , Environmental Pollutants/analysis , Equipment Design , Estrogens/analysis , Gas Chromatography-Mass Spectrometry/methods , Limit of Detection , Porosity , Solid Phase Microextraction/methods , Syringes , Wastewater/analysis , Water Pollutants, Chemical/analysis
11.
Chemistry ; 22(33): 11770-7, 2016 Aug 08.
Article in English | MEDLINE | ID: mdl-27388932

ABSTRACT

Dense and homogeneous metal-organic framework (MOF) coatings on functional bead surfaces are easily prepared by using intermediate sacrificial metal oxide coatings containing the metal precursor of the MOF. Polystyrene (PS) beads are coated with a ZnO layer to give ZnO@PS core-shell beads. The ZnO@PS beads are reactive in the presence of 2-methylimidazole to transform part of the ZnO coating into a porous zeolitic imidazolate framework-8 (ZIF-8) external shell positioned above the internal ZnO precursor shell. The obtained ZIF-8@ZnO@PS beads can be easily packed in column format for flow-through applications, such as the solid-phase extraction of trace priority-listed environmental pollutants. The prepared material shows an excellent permeance to flow when packed as a column to give high enrichment factors, facile regeneration, and excellent reusability for the extraction of the pollutant bisphenol A. It also shows an outstanding performance for the simultaneous enrichment of mixtures of endocrine disrupting chemicals (bisphenol A, 4-tert-octylphenol and 4-n-nonylphenol), facilitating their analysis when present at very low levels (<1 µg L(-1) ) in drinking waters. For the extraction of the pollutant bisphenol A, the prepared ZIF-8@ZnO@PS beads also show a superior extraction and preconcentration capacity to that of the PS beads used as precursors and the composite materials obtained by the direct growth of ZIF-8 on the surface of the PS beads in the absence of metal oxide intermediate coatings.


Subject(s)
Benzhydryl Compounds/chemistry , Imidazoles/chemistry , Metal-Organic Frameworks/chemistry , Phenols/chemistry , Water Pollutants, Chemical/chemistry , Solid Phase Extraction , Water Pollutants, Chemical/analysis , Zeolites
12.
Anal Chem ; 88(14): 6990-5, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27336802

ABSTRACT

We present the first application of submicrometric magnetic nanoporous carbons (µMNPCs) as sorbents for automated solid-phase extraction (SPE). Small zeolitic imidazolate framework-67 crystals are obtained at room temperature and directly carbonized under an inert atmosphere to obtain submicrometric nanoporous carbons containing magnetic cobalt nanoparticles. The µMNPCs have a high contact area, high stability, and their preparation is simple and cost-effective. The prepared µMNPCs are exploited as sorbents in a microcolumn format in a sequential injection analysis (SIA) system with online spectrophotometric detection, which includes a specially designed three-dimensional (3D)-printed holder containing an automatically actuated electromagnet. The combined action of permanent magnets and an automatically actuated electromagnet enabled the movement of the solid bed of particles inside the microcolumn, preventing their aggregation, increasing the versatility of the system, and increasing the preconcentration efficiency. The method was optimized using a full factorial design and Doehlert Matrix. The developed system was applied to the determination of anionic surfactants, exploiting the retention of the ion-pairs formed with Methylene Blue on the µMNPC. Using sodium dodecyl sulfate as a model analyte, quantification was linear from 50 to 1000 µg L(-1), and the detection limit was equal to 17.5 µg L(-1), the coefficient of variation (n = 8; 100 µg L(-1)) was 2.7%, and the analysis throughput was 13 h(-1). The developed approach was applied to the determination of anionic surfactants in water samples (natural water, groundwater, and wastewater), yielding recoveries of 93% to 110% (95% confidence level).

13.
Chempluschem ; 81(8): 828-835, 2016 Aug.
Article in English | MEDLINE | ID: mdl-31968824

ABSTRACT

The impact of the metal nature and framework type on the textural, acidic, and catalytic properties of M-MOF-74 (M=Co, Cu, Mg, Ni) and M-MIL-100 (M=Al, Cr, Sc, V) materials was evaluated. Both metal-organic framework (MOF) families showed 100 % selectivity to the tetrahydropyranyl ether for all alcohols (methanol, 1-propanol, 1-octanol, 2-adamantanol, 1-octadecanol) applied. Independently of the metal employed in the synthesis of M-MOF-74, the conversions were lower than those obtained with M-MIL-100. This result can be attributed to the combination of superior textural properties, accessibility, and strength of open metal sites in M-MIL-100 that improve the accessibility/diffusion of reactant and products. The variation of the size and shape of the alcohols on the activity and selectivity showed that the yield of tetrahydropyranyl ether decreased with increase of the alcohol size (methanol<1-propanol<1-octanol<2-adamantanol<1-octadecanol). The best catalytic results were achieved with V-MIL-100, and were even maintained after several cycles; this could be related to the superior polarizing power of V-containing units, which enhanced the activation of 3,4-dihydro-2H-pyran and, consequently, the yield of the target ether.

14.
Anal Chem ; 87(15): 7545-9, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26138320

ABSTRACT

A novel automatic strategy for the use of micro- and nanomaterials as sorbents for dispersive microsolid phase extraction (D-µ-SPE) based on the lab-in-syringe concept is reported. Using the developed technique, the implementation of magnetic metal-organic framework (MOF) materials for automatic solid-phase extraction has been achieved for the first time. A hybrid material based on submicrometric MOF crystals containing Fe3O4 nanoparticles was prepared and retained in the surface of a miniature magnetic bar. The magnetic bar was placed inside the syringe of an automatic bidirectional syringe pump, enabling dispersion and subsequent magnetic retrieval of the MOF hybrid material by automatic activation/deactivation of magnetic stirring. Using malachite green (MG) as a model adsorption analyte, a limit of detection of 0.012 mg/L and a linear working range of 0.04-2 mg/L were obtained for a sample volume equal to the syringe volume (5 mL). MG preconcentration was linear up to a volume of 40 mL, obtaining an enrichment factor of 120. The analysis throughput is 18 h(-1), and up to 3000 extractions/g of material can be performed. Recoveries ranging between 95 and 107% were obtained for the analysis of MG in different types of water and trout fish samples. The developed automatic D-µ-SPE technique is a safe alternative for the use of small-sized materials for sample preparation and is readily implementable to other magnetic materials independent of their size and shape and can be easily hyphenated to the majority of detectors and separation techniques.

15.
Dalton Trans ; 44(21): 9955-63, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25939594

ABSTRACT

We report on a facile and rapid microwave-assisted method for preparing a sodium-cadmium metal-organic framework (having coordinatively unsaturated sodium ions) that considerably shortens the conventional synthesis time from 5 days to 1 hour. The obtained (Na,Cd)-MOF showed an excellent volumetric CO2 adsorption capacity (5.2 mmol cm(-3) at 298 K and 1 bar) and better CO2 adsorption properties than those shown by the same metal-organic framework when synthesized following a more conventional procedure. Moreover, the newly prepared material was found to display high selectivity for adsorption of carbon dioxide over nitrogen, and good regenerability and stability during repeated CO2 adsorption-desorption cycles, which are the required properties for any adsorbent intended for carbon dioxide capture and sequestration (CSS) from the post-combustion flue gas of fossil fuelled power stations.

SELECTION OF CITATIONS
SEARCH DETAIL
...