Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Molecules ; 29(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38543034

ABSTRACT

The emergence and spread of drug-resistant Plasmodium falciparum parasites shed a serious concern on the worldwide control of malaria, the most important tropical disease in terms of mortality and morbidity. This situation has led us to consider the use of peptide-alkoxyamine derivatives as new antiplasmodial prodrugs that could potentially be efficient in the fight against resistant malaria parasites. Indeed, the peptide tag of the prodrug has been designed to be hydrolysed by parasite digestive proteases to afford highly labile alkoxyamines drugs, which spontaneously and instantaneously homolyse into two free radicals, one of which is expected to be active against P. falciparum. Since the parasite enzymes should trigger the production of the active drug in the parasite's food vacuoles, our approach is summarized as "to dig its grave with its fork". However, despite promising sub-micromolar IC50 values in the classical chemosensitivity assay, more in-depth tests evidenced that the anti-parasite activity of these compounds could be due to their cytostatic activity rather than a truly anti-parasitic profile, demonstrating that the antiplasmodial activity cannot be based only on measuring antiproliferative activity. It is therefore imperative to distinguish, with appropriate tests, a genuinely parasiticidal activity from a cytostatic activity.


Subject(s)
Antimalarials , Cytostatic Agents , Malaria, Falciparum , Malaria , Humans , Antimalarials/chemistry , Cytostatic Agents/therapeutic use , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Plasmodium falciparum , Peptides/pharmacology , Peptides/therapeutic use
2.
Malar J ; 23(1): 44, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347549

ABSTRACT

Over the past thirty years, epigenetic regulation of gene expression has gained increasing interest as it was shown to be implicated in illnesses ranging from cancers to parasitic diseases. In the malaria parasite, epigenetics was shown to be involved in several key steps of the complex life cycle of Plasmodium, among which asexual development and sexual commitment, but also in major biological processes like immune evasion, response to environmental changes or DNA repair. Because epigenetics plays such paramount roles in the Plasmodium parasite, enzymes involved in these regulating pathways represent a reservoir of potential therapeutic targets. This review focuses on epigenetic regulatory processes and their effectors in the malaria parasite, as well as the inhibitors of epigenetic pathways and their potential as new anti-malarial drugs. Such types of drugs could be formidable tools that may contribute to malaria eradication in a context of widespread resistance to conventional anti-malarials.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Parasites , Plasmodium , Animals , Humans , Plasmodium falciparum , Malaria, Falciparum/parasitology , Epigenesis, Genetic , Malaria/parasitology , Antimalarials/pharmacology , Antimalarials/therapeutic use
3.
Pharmaceutics ; 15(10)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37896200

ABSTRACT

The use of artemisinin and its derivatives has helped reduce the burden of malaria caused by Plasmodium falciparum. However, artemisinin-resistant parasites are able, in the presence of artemisinins, to stop their cell cycles. This quiescent state can alter the activity of artemisinin partner drugs leading to a secondary drug resistance and thus threatens malaria eradication strategies. Drugs targeting epigenetic mechanisms (namely epidrugs) are emerging as potential antimalarial drugs. Here, we set out to evaluate a selection of various epidrugs for their activity against quiescent parasites, to explore the possibility of using these compounds to counter artemisinin resistance. The 32 chosen epidrugs were first screened for their antiplasmodial activity and selectivity. We then demonstrated, thanks to the specific Quiescent-stage Survival Assay, that four epidrugs targeting both histone methylation or deacetylation as well as DNA methylation decrease the ability of artemisinin-resistant parasites to recover after artemisinin exposure. In the quest for novel antiplasmodial drugs with new modes of action, these results reinforce the therapeutic potential of epidrugs as antiplasmodial drugs especially in the context of artemisinin resistance.

4.
Antimicrob Agents Chemother ; 66(1): e0132021, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34606334

ABSTRACT

Partial artemisinin resistance, defined in patients as a delayed parasite clearance following artemisinin-based treatment, is conferred by non-synonymous mutations in the Kelch beta-propeller domain of the Plasmodium falciparum k13 (pfk13) gene. Here, we carried out in vitro selection over a 1-year period on a West African P. falciparum strain isolated from Kolle (Mali) under a dose-escalating artemisinin regimen. After 18 cycles of sequential drug pressure, the selected parasites exhibited enhanced survival to dihydroartemisinin in the ring-stage survival assay (RSA0-3h = 9.2%). Sanger and whole-genome sequence analyses identified the PfK13 P413A mutation, localized in the BTB/POZ domain, upstream of the propeller domain. This mutation was sufficient to confer in vitro artemisinin resistance when introduced into the PfK13 coding sequence of the parasite strain Dd2 by CRISPR/Cas9 gene editing. These results together with structural studies of the protein demonstrate that the propeller domain is not the sole in vitro mediator of PfK13-mediated artemisinin resistance, and highlight the importance of monitoring for mutations throughout PfK13.


Subject(s)
Antimalarials , Artemisinins , BTB-POZ Domain , Protozoan Proteins , Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Resistance/genetics , Mutation , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protozoan Proteins/genetics
5.
Microbiol Spectr ; 9(2): e0027421, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34724729

ABSTRACT

Human malaria infection begins with a one-time asymptomatic liver stage followed by a cyclic symptomatic blood stage. For decades, the research for novel antimalarials focused on the high-throughput screening of molecules that only targeted the asexual blood stages. In a search for new effective compounds presenting a triple action against erythrocytic and liver stages in addition to the ability to block the transmission of the disease via the mosquito vector, 2-amino-thienopyrimidinone derivatives were synthesized and tested for their antimalarial activity. One molecule, named gamhepathiopine (denoted as "M1" herein), was active at submicromolar concentrations against both erythrocytic (50% effective concentration [EC50] = 0.045 µM) and liver (EC50 = 0.45 µM) forms of Plasmodium falciparum. Furthermore, gamhepathiopine efficiently blocked the development of the sporogonic cycle in the mosquito vector by inhibiting the exflagellation step. Moreover, M1 was active against artemisinin-resistant forms (EC50 = 0.227 µM), especially at the quiescent stage. Nevertheless, in mice, M1 showed modest activity due to its rapid metabolization by P450 cytochromes into inactive derivatives, calling for the development of new parent compounds with improved metabolic stability and longer half-lives. These results highlight the thienopyrimidinone scaffold as a novel antiplasmodial chemotype of great interest to search for new drug candidates displaying multistage activity and an original mechanism of action with the potential to be used in combination therapies for malaria elimination in the context of artemisinin resistance. IMPORTANCE This work reports a new chemical structure that (i) displays activity against the human malaria parasite Plasmodium falciparum at 3 stages of the parasitic cycle (blood stage, hepatic stage, and sexual stages), (ii) remains active against parasites that are resistant to the first-line treatment recommended by the World Health Organization (WHO) for the treatment of severe malaria (artemisinins), and (iii) reduces transmission of the parasite to the mosquito vector in a mouse model. This new molecule family could open the way to the conception of novel antimalarial drugs with an original multistage mechanism of action to fight against Plasmodium drug resistance and block interhuman transmission of malaria.


Subject(s)
Antimalarials/pharmacology , Malaria, Falciparum/drug therapy , Plasmodium cynomolgi/drug effects , Plasmodium falciparum/drug effects , Plasmodium yoelii/drug effects , Pyrimidinones/pharmacology , Animals , Antimalarials/chemistry , Artemisinins/pharmacology , Cell Line, Tumor , Disease Models, Animal , Dogs , Drug Resistance/physiology , Female , Hep G2 Cells , Humans , Liver/parasitology , Macaca fascicularis , Madin Darby Canine Kidney Cells , Male , Mice , Mice, Inbred BALB C , Pyrimidinones/chemistry
6.
Pharmaceuticals (Basel) ; 14(8)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34451821

ABSTRACT

The malaria parasite harbors a relict plastid called the apicoplast. Although not photosynthetic, the apicoplast retains unusual, non-mammalian metabolic pathways that are essential to the parasite, opening up a new perspective for the development of novel antimalarials which display a new mechanism of action. Based on the previous antiplasmodial hit-molecules identified in the 2-trichloromethylquinoxaline series, we report herein a structure-activity relationship (SAR) study at position two of the quinoxaline ring by synthesizing 20 new compounds. The biological evaluation highlighted a hit compound (3i) with a potent PfK1 EC50 value of 0.2 µM and a HepG2 CC50 value of 32 µM (Selectivity index = 160). Nitro-containing (3i) was not genotoxic, both in the Ames test and in vitro comet assay. Activity cliffs were observed when the 2-CCl3 group was replaced, showing that it played a key role in the antiplasmodial activity. Investigation of the mechanism of action showed that 3i presents a drug response by targeting the apicoplast and a quick-killing mechanism acting on another target site.

7.
Molecules ; 25(17)2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32846996

ABSTRACT

Malaria and schistosomiasis are major infectious causes of morbidity and mortality in the tropical and sub-tropical areas. Due to the widespread drug resistance of the parasites, the availability of new efficient and affordable drugs for these endemic pathologies is now a critical public health issue. In this study, we report the design, the synthesis and the preliminary biological evaluation of a series of alkoxyamine derivatives as potential drugs against Plasmodium and Schistosoma parasites. The compounds (RS/SR)-2F, (RR/SS)-2F, and 8F, having IC50 values in nanomolar range against drug-resistant P. falciparum strains, but also five other alkoxyamines, inducing the death of all adult worms of S. mansoni in only 1 h, can be considered as interesting chemical starting points of the series for improvement of the activity, and further structure activity, relationship studies. Moreover, investigation of the mode of action and the rate constants kd for C-ON bond homolysis of new alkoxyamines is reported, showing a possible alkyl radical mediated biological activity. A theoretical chemistry study allowed us to design new structures of alkoxyamines in order to improve the selectivity index of these drugs.


Subject(s)
Anthelmintics , Antimalarials , Plasmodium falciparum/growth & development , Schistosoma mansoni/growth & development , Animals , Anthelmintics/chemical synthesis , Anthelmintics/chemistry , Anthelmintics/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antimalarials/pharmacology , Humans
8.
J Antimicrob Chemother ; 75(10): 2826-2834, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32653910

ABSTRACT

BACKGROUND: Quiescence is an unconventional mechanism of Plasmodium survival, mediating artemisinin resistance. This phenomenon increases the risk of clinical failures following artemisinin-based combination therapies (ACTs) by slowing parasite clearance and allowing the selection of parasites resistant to partner drugs. OBJECTIVES: To thwart this multiresistance, the quiescent state of artemisinin-resistant parasites must be taken into consideration from the very early stages of the drug discovery process. METHODS: We designed a novel phenotypic assay we have named the quiescent-stage survival assay (QSA) to assess the antiplasmodial activity of drugs on quiescent parasites. This assay was first validated on quiescent forms from different artemisinin-resistant parasite lines (laboratory strain and field isolates), using two reference drugs with different mechanisms of action: chloroquine and atovaquone. Furthermore, the efficacies of different partner drugs of artemisinins used in ACTs were investigated against both laboratory strains and field isolates from Cambodia. RESULTS: Our results highlight that because of the mechanism of quiescence and the respective pharmacological targets of drugs, drug efficacies on artemisinin-resistant parasites may be different between quiescent parasites and their proliferating forms. CONCLUSIONS: These data confirm the high relevance of adding the chemosensitivity evaluation of quiescent parasites by the specific in vitro QSA to the antiplasmodial drug development process in the current worrisome context of artemisinin resistance.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Parasites , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Cambodia , Drug Resistance , Malaria, Falciparum/drug therapy , Parasites/drug effects , Plasmodium falciparum/drug effects , Protozoan Proteins
9.
J Lipid Res ; 60(3): 636-647, 2019 03.
Article in English | MEDLINE | ID: mdl-30626624

ABSTRACT

Inside the human host, Leishmania infection starts with phagocytosis of infective promastigotes by macrophages. In order to survive, Leishmania has developed several strategies to manipulate macrophage functions. Among these strategies, Leishmania as a source of bioactive lipids has been poorly explored. Herein, we assessed the biosynthesis of polyunsaturated fatty acid metabolites by infective and noninfective stages of Leishmania and further explored the role of these metabolites in macrophage polarization. The concentration of docosahexaenoic acid metabolites, precursors of proresolving lipid mediators, was increased in the infective stage of the parasite compared with the noninfective stage, and cytochrome P450-like proteins were shown to be implicated in the biosynthesis of these metabolites. The treatment of macrophages with lipids extracted from the infective forms of the parasite led to M2 macrophage polarization and blocked the differentiation into the M1 phenotype induced by IFN-γ. In conclusion, Leishmania polyunsaturated fatty acid metabolites, produced by cytochrome P450-like protein activity, are implicated in parasite/host interactions by promoting the polarization of macrophages into a proresolving M2 phenotype.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Host-Parasite Interactions , Leishmania/physiology , Animals , CHO Cells , Cricetulus , Leishmania/metabolism , Macrophages/cytology , Macrophages/metabolism , Macrophages/parasitology , Male , Mice , Mice, Inbred C57BL , Phenotype
10.
ChemMedChem ; 13(20): 2217-2228, 2018 10 22.
Article in English | MEDLINE | ID: mdl-30221468

ABSTRACT

An antikinetoplastid pharmacomodulation study at position 3 of the recently described hit molecule 3-bromo-8-nitroquinolin-2(1H)-one was conducted. Twenty-four derivatives were synthesised using the Suzuki-Miyaura cross-coupling reaction and evaluated in vitro on both Leishmania infantum axenic amastigotes and Trypanosoma brucei brucei trypomastigotes. Introduction of a para-carboxyphenyl group at position 3 of the scaffold led to the selective antitrypanosomal hit molecule 3-(4-carboxyphenyl)-8-nitroquinolin-2(1H)-one (21) with a lower reduction potential (-0.56 V) than the initial hit (-0.45 V). Compound 21 displays micromolar antitrypanosomal activity (IC50 =1.5 µm) and low cytotoxicity on the human HepG2 cell line (CC50 =120 µm), having a higher selectivity index (SI=80) than the reference drug eflornithine. Contrary to results previously obtained in this series, hit compound 21 is inactive toward L. infantum and is not efficiently bioactivated by T. brucei brucei type I nitroreductase, which suggests the existence of an alternative mechanism of action.


Subject(s)
Nitroquinolines/pharmacology , Quinolones/pharmacology , Trypanocidal Agents/pharmacology , Catalysis , Hep G2 Cells , Humans , Leishmania donovani/drug effects , Leishmania infantum/drug effects , Molecular Structure , Nitroquinolines/chemical synthesis , Nitroquinolines/chemistry , Nitroquinolines/toxicity , Palladium/chemistry , Parasitic Sensitivity Tests , Quinolones/chemical synthesis , Quinolones/chemistry , Quinolones/toxicity , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanocidal Agents/toxicity , Trypanosoma brucei brucei/drug effects
11.
Eur J Med Chem ; 155: 135-152, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29885575

ABSTRACT

To study the antiparasitic 8-nitroquinolin-2(1H)-one pharmacophore, a series of 31 derivatives was synthesized in 1-5 steps and evaluated in vitro against both Leishmania infantum and Trypanosoma brucei brucei. In parallel, the reduction potential of all molecules was measured by cyclic voltammetry. Structure-activity relationships first indicated that antileishmanial activity depends on an intramolecular hydrogen bond (described by X-ray diffraction) between the lactam function and the nitro group, which is responsible for an important shift of the redox potential (+0.3 V in comparison with 8-nitroquinoline). With the assistance of computational chemistry, a set of derivatives presenting a large range of redox potentials (from -1.1 to -0.45 V) was designed and provided a list of suitable molecules to be synthesized and tested. This approach highlighted that, in this series, only substrates with a redox potential above -0.6 V display activity toward L. infantum. Nevertheless, such relation between redox potentials and in vitro antiparasitic activities was not observed in T. b. brucei. Compound 22 is a new hit compound in the series, displaying both antileishmanial and antitrypanosomal activity along with a low cytotoxicity on the human HepG2 cell line. Compound 22 is selectively bioactivated by the type 1 nitroreductases (NTR1) of L. donovani and T. brucei brucei. Moreover, despite being mutagenic in the Ames test, as most of nitroaromatic derivatives, compound 22 was not genotoxic in the comet assay. Preliminary in vitro pharmacokinetic parameters were finally determined and pointed out a good in vitro microsomal stability (half-life > 40 min) and a 92% binding to human albumin.


Subject(s)
Antiprotozoal Agents/pharmacology , Electrochemical Techniques , Kinetoplastida/drug effects , Nitroquinolines/pharmacology , Nitroreductases/metabolism , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Cell Survival/drug effects , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Kinetoplastida/enzymology , Leishmania infantum/drug effects , Leishmania infantum/enzymology , Molecular Structure , Nitroquinolines/chemical synthesis , Nitroquinolines/chemistry , Parasitic Sensitivity Tests , Structure-Activity Relationship , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/enzymology
12.
Parasite ; 25: 24, 2018.
Article in English | MEDLINE | ID: mdl-29676250

ABSTRACT

The use of artemisinin-based combination therapies (ACTs), which combine an artemisinin derivative with a partner drug, in the treatment of uncomplicated malaria has largely been responsible for the significant reduction in malaria-related mortality in tropical and subtropical regions. ACTs have also played a significant role in the 18% decline in the incidence of malaria cases from 2010 to 2016. However, this progress is seriously threatened by the reduced clinical efficacy of artemisinins, which is characterised by delayed parasitic clearance and a high rate of recrudescence, as reported in 2008 in Western Cambodia. Resistance to artemisinins has already spread to several countries in Southeast Asia. Furthermore, resistance to partner drugs has been shown in some instances to be facilitated by pre-existing decreased susceptibility to the artemisinin component of the ACT. A major concern is not only the spread of these multidrug-resistant parasites to the rest of Asia but also their possible appearance in Sub-Saharan Africa, the continent most affected by malaria, as has been the case in the past with parasite resistance to other antimalarial treatments. It is therefore essential to understand the acquisition of resistance to artemisinins by Plasmodium falciparum to adapt malaria treatment policies and to propose new therapeutic solutions.


TITLE: Résistance de Plasmodium falciparum aux combinaisons thérapeutiques à base d'artémisinine : une épée de Damoclès sur les stratégies d'éradication du paludisme. ABSTRACT: L'utilisation, dans le traitement du paludisme simple, de combinaisons thérapeutiques associant un dérivé de l'artémisinine et une molécule partenaire a largement contribué à une réduction significative de la mortalité due à cette pathologie dans les régions tropicales et subtropicales ainsi qu'une diminution de 18% de nombre de cas de 2010 à 2016. Cependant, ces progrès sont sérieusement menacés par la diminution de l'efficacité clinique des artémisinines caractérisées par des clairances parasitaires retardées et un taux de recrudescence élevé, signalés en 2008 à l'ouest du Cambodge. La résistance aux artémisinines s'est déjà étendue à plusieurs pays d'Asie du Sud-Est. De plus, il a été montré que la résistance aux molécules partenaires des artémisinines dans ces combinaisons thérapeutiques (ACT) a été facilitée suite à une diminution de la sensibilité à l'artémisinine. L'une des principales préoccupations est non seulement la propagation de ces parasites multi-résistants dans le reste de l'Asie, mais aussi leur apparition possible en Afrique subsaharienne, continent le plus touché par le paludisme, comme cela a été le cas dans le passé avec la résistance de parasites à d'autres traitements antipaludiques. Il est donc essentiel de comprendre l'acquisition de la résistance de Plasmodium falciparum aux artémisinines afin d'adapter les politiques de santé face au paludisme et de proposer de nouvelles solutions thérapeutiques.


Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Drug Resistance, Multiple , Drug Therapy, Combination/adverse effects , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Africa South of the Sahara/epidemiology , Antimalarials/pharmacology , Artemisinins/administration & dosage , Artemisinins/adverse effects , Artemisinins/pharmacology , Asia/epidemiology , Asia, Southeastern/epidemiology , Cambodia/epidemiology , Clinical Trials as Topic , Disease Eradication/legislation & jurisprudence , Disease Eradication/methods , Humans , Malaria/drug therapy , Malaria/epidemiology , Malaria/parasitology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology
13.
Am J Trop Med Hyg ; 98(4): 1123-1131, 2018 04.
Article in English | MEDLINE | ID: mdl-29436338

ABSTRACT

We assessed the ex vivo/in vitro sensitivity of 54 Malian Plasmodium falciparum isolates to artemisinin for the monitoring of drug resistance in this area. The artemisinin sensitivity of parasites was evaluated using 1) the ex vivo and in vitro parasite recrudescence detection after treatment of the ring stage with 1-200 nM artemisinin for 48 hours and 2) the in vitro parasite recrudescence kinetics assay over 7 days after 6-hour treatment of the ring stage with 700 nM dihydroartemisinin (DHA). In addition, as recommended by the World Health Organization for artemisinin resistance characterization, the ring-stage survival assay (RSA0-3 h) was performed and the parasite isolates were sequenced at the kelch 13 propeller locus. No clinical and molecular evidence of artemisinin resistance was observed. However, these isolates present different phenotypic profiles in response to artemisinin treatments. Despite all RSA0-3 h values less than 1.5%, six out of 46 (13.0%) isolates tested ex vivo and four out of six (66.7%) isolates tested in vitro were able to multiply after 48-hour treatments with 100 nM artemisinin. Moreover, five out of eight isolates tested showed faster parasite recovery after DHA treatment in kinetic assays. The presence of such phenotypes needs to be taken into account in the assessment of the efficacy of artemisinins in Mali. The assays presented here appear as valuable tools for the monitoring of artemisinin sensitivity in the field and thus could help to evaluate the risk of emergence of artemisinin resistance in Africa.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Plasmodium falciparum/drug effects , Drug Resistance , Genotype , Humans , Phenotype , Plasmodium falciparum/genetics
15.
J Antimicrob Chemother ; 73(2): 395-403, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29177421

ABSTRACT

Background: Owing to the emergence of multiresistant Plasmodium falciparum parasites in Southeast Asia, along with the impressive decrease in the efficacy of the endoperoxide compound artemisinin and of artemisinin-based combination therapies, the development of novel antimalarial drugs or combinations is required. Although several antiplasmodial molecules, such as endoperoxide-based compounds, are in advanced research or development, we do not know whether resistance to artemisinin derivatives might impact the efficacy of these new compounds. Objectives: To address this issue, the antiplasmodial efficacy of trioxaquines, hybrid endoperoxide-based molecules, was explored, along with their ability to select in vitro resistant parasites under discontinuous and dose-escalating drug pressure. Methods: The in vitro susceptibilities of artemisinin- and trioxaquine-resistant laboratory strains and recent Cambodian field isolates were evaluated by different phenotypic and genotypic assays. Results: Trioxaquines tested presented strong cross-resistance with artemisinin both in the artemisinin-resistant laboratory F32-ART5 line and in Cambodian field isolates. Trioxaquine drug pressure over 4 years led to the in vitro selection of the F32-DU line, which is resistant to trioxaquine and artemisinin, similar to the F32-ART lineage. F32-DU whole genome sequencing (WGS) revealed that resistance to trioxaquine was associated with the same non-synonymous mutation in the propeller domain of the K13 protein (M476I) that was found in the F32-ART lineage. Conclusions: These worrisome results indicate the risk of cross-resistance between artemisinins and endoperoxide-based antiplasmodial drugs in the development of the K13 mutant parasites and question the usefulness of these molecules in the future therapeutic arsenal.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Resistance , Plasmodium falciparum/drug effects , Cambodia , Genotype , Humans , Malaria, Falciparum/parasitology , Mutant Proteins/genetics , Parasitic Sensitivity Tests , Phenotype , Protozoan Proteins/genetics , Selection, Genetic , Whole Genome Sequencing
16.
Nat Prod Res ; 31(2): 138-142, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27561759

ABSTRACT

One new phthalide (1) was isolated from aerial parts of Peperomia nivalis, along with known compounds (2 and 3), reported in this species for the first time. The structure of the new compound was characterised on the basis of 1D (1H and 13C NMR), 2D (COSY, HMQC, HMBC and NOESY) NMR and high-resolution mass spectral (HRMS) data. Compound 2 was isolated from a natural source for the first time but previously synthesised. Compounds 1-3 were evaluated for their anti-Helicobacter pylori and anti-Plasmodium falciparum activities. Compound 1 showed moderate activities against H. pylori (MIC 47.5 µM) and the F32-Tanzania strain of P. falciparum (IC50 8.5 µM). Compounds 2 and 3 exhibited weak anti-H. pylori activity (MIC 241.3 and 237.6 µM, respectively) and were inactive against P. falciparum.


Subject(s)
Benzofurans/chemistry , Benzofurans/pharmacology , Peperomia/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antimalarials/chemistry , Antimalarials/pharmacology , Helicobacter pylori/drug effects , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Peru , Plasmodium falciparum/drug effects , Spectrophotometry, Ultraviolet
17.
Nat Prod Res ; 31(11): 1333-1338, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27736194

ABSTRACT

Eleven compounds were isolated from Poraqueiba sericea stems and identified as niga-ichigoside-F1 (1), trachelosperoside B1 (2), 4-epi-niga-ichigoside (7), 19α-hydroxyasiatic acid (3), myrianthic acid (4), hyptatic acid (5), trachelosperogenin B (6), arjunolic acid (8), and trachelosperogenin E (9), secologanoside (10) and secoxyloganin (11). Compounds 1-11 were tested for their antileishmanial activities against Leishmania infantum promastigotes, 1-6 and 8-11 were tested for their cytotoxic activities on fibroblasts, 1-3, 5-6, 8-11 were evaluated for their anti-elastase and anti-acetylcholinesterase assays activities by a spectrophotometric method and 1-2, 5 and 7-10 were tested using bioautography for their ß-glucosidase. No antileishmanial activity was detected; compounds 1, 2 and 11 showed a moderate cytotoxic activity with IC50 17.7, 20.5 and 10.9 µg/mL, respectively; compounds 2, 8, 9 and 10 gave a percentage of inhibition ranging from 13 to 16% (at 50 µg/mL) and compounds 1 and 2 showed an inhibition zone on ß-glucosidase and anti-acetylcholinesterase assays.


Subject(s)
Magnoliopsida/chemistry , Plant Stems/chemistry , Triterpenes/pharmacology , Acetylcholinesterase/drug effects , Animals , Humans , Leishmania infantum/drug effects , Pancreatic Elastase/antagonists & inhibitors , Plant Extracts/pharmacology , Saponins/isolation & purification , Saponins/pharmacology , Triterpenes/isolation & purification , beta-Glucosidase/antagonists & inhibitors
18.
Phytochemistry ; 130: 262-72, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27358036

ABSTRACT

Twelve oleanane saponins, zebiriosides A-L, were isolated from the roots of Dendrobangia boliviana Rusby, together with two known saponins, talunùmoside I and 3-O-ß-d-glucuronopyranosyl serjanic acid. These saponins are glycosides of serjanic or phytolaccinic acid. Their structures were established on two basis: first, their spectral data, mainly HR-TOFESIMS, 1D-NMR ((1)H, (13)C, DEPT) and 2D-NMR ((1)H(1)H COSY, TOCSY, HSQC, HMBC, and ROESY), and second by comparison with literature data. These compounds were evaluated for their cytotoxic, antileishmanial and hemolytic activities. No antileishmanial or hemolytic activities were revealed, however zebirioside C and zebirioside I showed cytotoxicity against fibroblasts with IC50 of 6.4 and 5.6 µM, respectively.


Subject(s)
Antineoplastic Agents, Phytogenic/isolation & purification , Cytotoxins/isolation & purification , Cytotoxins/pharmacology , Magnoliopsida/chemistry , Oleanolic Acid/analogs & derivatives , Plant Roots/chemistry , Saponins/isolation & purification , Triterpenes/isolation & purification , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Cytotoxins/chemistry , Fibroblasts/drug effects , Leishmania/drug effects , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Oleanolic Acid/chemistry , Oleanolic Acid/isolation & purification , Oleanolic Acid/pharmacology , Saponins/chemistry , Saponins/pharmacology , Triterpenes/chemistry , Triterpenes/pharmacology
19.
Bioorg Med Chem ; 24(13): 3075-3082, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27240469

ABSTRACT

A series of twenty five molecules, including imidazolium salts functionalized by N-, O- or S-containing groups and their corresponding cationic, neutral or anionic gold(I) complexes were evaluated on Plasmodium falciparum in vitro and then on Vero cells to determine their selectivity. Among them, eight new compounds were synthesized and fully characterized by spectroscopic methods. The X-ray structures of three gold(I) complexes are presented. Except one complex (18), all the cationic gold(I) complexes show potent antiplasmodial activity with IC50 in the micro- and submicromolar range, correlated with their lipophilicity. Structure-activity relationships enable to evidence a lead-complex (21) displaying a good activity (IC50=210nM) close to the value obtained with chloroquine (IC50=514nM) and a weak cytotoxicity.


Subject(s)
Antimalarials/pharmacology , Gold/pharmacology , Methane/analogs & derivatives , Organometallic Compounds/chemical synthesis , Plasmodium falciparum/drug effects , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antimalarials/toxicity , Cell Survival/drug effects , Chlorocebus aethiops , Chloroquine/chemistry , Chloroquine/pharmacology , Crystallography, X-Ray , Gold/chemistry , Inhibitory Concentration 50 , Methane/chemistry , Methane/pharmacology , Molecular Structure , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Organometallic Compounds/toxicity , Structure-Activity Relationship , Vero Cells
20.
Malar J ; 15: 149, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26955948

ABSTRACT

Plasmodium falciparum resistance to artemisinins, the most potent and fastest acting anti-malarials, threatens malaria elimination strategies. Artemisinin resistance is due to mutation of the PfK13 propeller domain and involves an unconventional mechanism based on a quiescence state leading to parasite recrudescence as soon as drug pressure is removed. The enhanced P. falciparum quiescence capacity of artemisinin-resistant parasites results from an increased ability to manage oxidative damage and an altered cell cycle gene regulation within a complex network involving the unfolded protein response, the PI3K/PI3P/AKT pathway, the PfPK4/eIF2α cascade and yet unidentified transcription factor(s), with minimal energetic requirements and fatty acid metabolism maintained in the mitochondrion and apicoplast. The detailed study of these mechanisms offers a way forward for identifying future intervention targets to fend off established artemisinin resistance.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Resistance , Malaria, Falciparum/parasitology , Plasmodium falciparum , Drug Resistance/drug effects , Drug Resistance/genetics , Humans , Models, Biological , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...