Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 9(1): 663, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36316345

ABSTRACT

Ubiquitous self-tracking technologies have penetrated various aspects of our lives, from physical and mental health monitoring to fitness and entertainment. Yet, limited data exist on the association between in the wild large-scale physical activity patterns, sleep, stress, and overall health, and behavioral and psychological patterns due to challenges in collecting and releasing such datasets, including waning user engagement or privacy considerations. In this paper, we present the LifeSnaps dataset, a multi-modal, longitudinal, and geographically-distributed dataset containing a plethora of anthropological data, collected unobtrusively for the total course of more than 4 months by n = 71 participants. LifeSnaps contains more than 35 different data types from second to daily granularity, totaling more than 71 M rows of data. The participants contributed their data through validated surveys, ecological momentary assessments, and a Fitbit Sense smartwatch and consented to make these data available to empower future research. We envision that releasing this large-scale dataset of multi-modal real-world data will open novel research opportunities and potential applications in multiple disciplines.


Subject(s)
Ecological Momentary Assessment , Mental Health , Humans , Exercise , Sleep , Surveys and Questionnaires
2.
Sci Rep ; 12(1): 7956, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35562527

ABSTRACT

The adoption of multisensor wearables presents the opportunity of longitudinal monitoring of sleep in large populations. Personalized yet device-agnostic algorithms can sidestep laborious human annotations and objectify cross-cohort comparisons. We developed and tested a heart rate-based algorithm that captures inter- and intra-individual sleep differences in free-living conditions and does not require human input. We evaluated it on four study cohorts using different research- and consumer-grade devices for over 2000 nights. Recording periods included both 24 h free-living and conventional lab-based night-only data. We compared our optimized method against polysomnography, sleep diaries and sleep periods produced through a state-of-the-art acceleration based method. Against sleep diaries, the algorithm yielded a mean squared error of 0.04-0.06 and a total sleep time (TST) deviation of [Formula: see text]2.70 (± 5.74) and 12.80 (± 3.89) minutes, respectively. When evaluated with PSG lab studies, the MSE ranged between 0.06 and 0.11 yielding a time deviation between [Formula: see text]29.07 and [Formula: see text]55.04 minutes. These results showcase the value of this open-source, device-agnostic algorithm for the reliable inference of sleep in free-living conditions and in the absence of annotations.


Subject(s)
Wearable Electronic Devices , Heart Rate , Humans , Polysomnography/methods , Reproducibility of Results , Sleep/physiology
3.
Diabetes Res Clin Pract ; 169: 108388, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32858096

ABSTRACT

OBJECTIVE: To develop a machine-based algorithm from clinical and demographic data, physical activity and glucose variability to predict hyperglycaemic and hypoglycaemic excursions in patients with type 2 diabetes on multiple glucose lowering therapies who fast during Ramadan. PATIENTS AND METHODS: Thirteen patients (10 males and three females) with type 2 diabetes on 3 or more anti-diabetic medications were studied with a Fitbit-2 pedometer device and Freestyle Libre (Abbott Diagnostics) 2 weeks before and 2 weeks during Ramadan. Several machine learning techniques were trained to predict blood glucose levels in a regression framework utilising physical activity and contemporaneous blood glucose levels, comparing Ramadan to non-Ramadan days. RESULTS: The median age of participants was 51 years (IQR 49-52); median BMI was 33.2 kg/m2 (IQR 33.0-35.9) and median HbA1c was 7.3% (IQR 6.7-7.8). The optimal model using physical activity achieved an R2 of 0.548 and a mean absolute error (MAE) of 30.30. The addition of electronic health record (ehr) information increased R2 to 0.636 and reduced MAE to 26.89 and the time of the day feature further increased R2 to 0.768 and reduced MAE to 20.55. Combining all the features together resulted in an optimal XGBoost model with an R2 of 0.836 and MAE of 17.47. This model accurately estimated normal glucose levels in 2584/2715 (95.2%) readings and hyperglycaemic events in 852/1031 (82.6%) readings, but fewer hypoglycaemic events (48/172 (27.9%)). The optimal XGBoost model prioritized age, gender, BMI and HbA1c followed by glucose levels and physical activity. Interestingly, the blood glucose level prediction by our model was influenced by use of SGLT2i. CONCLUSION: XGBoost, a machine learning AI algorithm achieves high predictive performance for normal and hyperglycaemic excursions, but has limited predictive value for hypoglycaemia in patients on multiple therapies who fast during Ramadan.


Subject(s)
Artificial Intelligence/standards , Diabetes Mellitus, Type 2/blood , Fasting/blood , Hypoglycemia/blood , Machine Learning/standards , Female , Glucose/therapeutic use , Humans , Islam , Male , Middle Aged , Risk Factors
4.
NPJ Digit Med ; 3: 42, 2020.
Article in English | MEDLINE | ID: mdl-32219183

ABSTRACT

In recent years, there has been a significant expansion in the development and use of multi-modal sensors and technologies to monitor physical activity, sleep and circadian rhythms. These developments make accurate sleep monitoring at scale a possibility for the first time. Vast amounts of multi-sensor data are being generated with potential applications ranging from large-scale epidemiological research linking sleep patterns to disease, to wellness applications, including the sleep coaching of individuals with chronic conditions. However, in order to realise the full potential of these technologies for individuals, medicine and research, several significant challenges must be overcome. There are important outstanding questions regarding performance evaluation, as well as data storage, curation, processing, integration, modelling and interpretation. Here, we leverage expertise across neuroscience, clinical medicine, bioengineering, electrical engineering, epidemiology, computer science, mHealth and human-computer interaction to discuss the digitisation of sleep from a inter-disciplinary perspective. We introduce the state-of-the-art in sleep-monitoring technologies, and discuss the opportunities and challenges from data acquisition to the eventual application of insights in clinical and consumer settings. Further, we explore the strengths and limitations of current and emerging sensing methods with a particular focus on novel data-driven technologies, such as Artificial Intelligence.

5.
PLoS One ; 15(3): e0230455, 2020.
Article in English | MEDLINE | ID: mdl-32155230

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0229175.].

6.
PLoS One ; 15(2): e0229175, 2020.
Article in English | MEDLINE | ID: mdl-32084178

ABSTRACT

Venezuela is going through the worst economical, political and social crisis in its modern history. Basic products like food or medicine are scarce and hyperinflation is combined with economic depression. This situation is creating an unprecedented refugee and migrant crisis in the region. Governments and international agencies have not been able to consistently leverage reliable information using traditional methods. Therefore, to organize and deploy any kind of humanitarian response, it is crucial to evaluate new methodologies to measure the number and location of Venezuelan refugees and migrants across Latin America. In this paper, we propose to use Facebook's advertising platform as an additional data source for monitoring the ongoing crisis. We estimate and validate national and sub-national numbers of refugees and migrants and break-down their socio-economic profiles to further understand the complexity of the phenomenon. Although limitations exist, we believe that the presented methodology can be of value for real-time assessment of refugee and migrant crises world-wide.


Subject(s)
Advertising , Emigration and Immigration/statistics & numerical data , Refugees/statistics & numerical data , Social Media/statistics & numerical data , Venezuela
7.
NPJ Digit Med ; 2: 50, 2019.
Article in English | MEDLINE | ID: mdl-31304396

ABSTRACT

Accurately measuring sleep and its quality with polysomnography (PSG) is an expensive task. Actigraphy, an alternative, has been proven cheap and relatively accurate. However, the largest experiments conducted to date, have had only hundreds of participants. In this work, we processed the data of the recently published Multi-Ethnic Study of Atherosclerosis (MESA) Sleep study to have both PSG and actigraphy data synchronized. We propose the adoption of this publicly available large dataset, which is at least one order of magnitude larger than any other dataset, to systematically compare existing methods for the detection of sleep-wake stages, thus fostering the creation of new algorithms. We also implemented and compared state-of-the-art methods to score sleep-wake stages, which range from the widely used traditional algorithms to recent machine learning approaches. We identified among the traditional algorithms, two approaches that perform better than the algorithm implemented by the actigraphy device used in the MESA Sleep experiments. The performance, in regards to accuracy and F 1 score of the machine learning algorithms, was also superior to the device's native algorithm and comparable to human annotation. Future research in developing new sleep-wake scoring algorithms, in particular, machine learning approaches, will be highly facilitated by the cohort used here. We exemplify this potential by showing that two particular deep-learning architectures, CNN and LSTM, among the many recently created, can achieve accuracy scores significantly higher than other methods for the same tasks.

8.
J Med Internet Res ; 21(1): e10986, 2019 01 30.
Article in English | MEDLINE | ID: mdl-30698536

ABSTRACT

BACKGROUND: Understandability plays a key role in ensuring that people accessing health information are capable of gaining insights that can assist them with their health concerns and choices. The access to unclear or misleading information has been shown to negatively impact the health decisions of the general public. OBJECTIVE: The aim of this study was to investigate methods to estimate the understandability of health Web pages and use these to improve the retrieval of information for people seeking health advice on the Web. METHODS: Our investigation considered methods to automatically estimate the understandability of health information in Web pages, and it provided a thorough evaluation of these methods using human assessments as well as an analysis of preprocessing factors affecting understandability estimations and associated pitfalls. Furthermore, lessons learned for estimating Web page understandability were applied to the construction of retrieval methods, with specific attention to retrieving information understandable by the general public. RESULTS: We found that machine learning techniques were more suitable to estimate health Web page understandability than traditional readability formulae, which are often used as guidelines and benchmark by health information providers on the Web (larger difference found for Pearson correlation of .602 using gradient boosting regressor compared with .438 using Simple Measure of Gobbledygook Index with the Conference and Labs of the Evaluation Forum eHealth 2015 collection). CONCLUSIONS: The findings reported in this paper are important for specialized search services tailored to support the general public in seeking health advice on the Web, as they document and empirically validate state-of-the-art techniques and settings for this domain application.


Subject(s)
Information Storage and Retrieval/methods , Internet , Algorithms , Comprehension , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...