Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Prev Vet Med ; 206: 105702, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35797823

ABSTRACT

In parts of the United Kingdom and Ireland, the European badger is a wildlife host for Mycobacterium bovis (the causative agent of bovine tuberculosis). Badger vaccination is one management option for reducing disease spread. Vaccination is currently achieved by parenteral vaccination of captured badgers, but an oral vaccine delivered in a bait may provide an additional approach in the future. We conducted two field experiments in wild badger populations to identify factors that influence uptake (% of individuals with evidence of bait consumption) of candidate oral vaccine baits. In both instances, baits containing the biomarker iophenoxic acid (as a proxy for the vaccine) were fed at burrows (setts) associated with badger social groups (study A = 48 groups, study B = 40 groups). Badgers were captured following a period of bait deployment to quantify uptake in relation to age, sex and social group. In addition, groups were allocated different treatments and the bait deployment protocol was varied to identify effects on uptake. Study A tested the effects of season, bait type, bait placement and packaging, while study B investigated the effects of bait quantity and badger activity levels. Overall bait uptake was low (Study A = 24 %, Study B = 37 %) but this varied among treatment groups (range 0-58 %). In both studies, bait uptake was significantly higher in cubs than in adults. Uptake was substantially higher where baits were placed directly into sett entrances (rather than under tiles near setts), and by badgers caught at main setts rather than at outlier setts. Season, bait type and packaging did not influence uptake, while increasing the quantity of bait available increased uptake by cubs but not by adults. Levels of badger activity at setts varied over time (suggesting potential disturbance), but were positively associated with levels of bait uptake.


Subject(s)
Cattle Diseases , Mustelidae , Mycobacterium bovis , Tuberculosis, Bovine , Animals , Animals, Wild , BCG Vaccine , Cattle , Mustelidae/microbiology , Tuberculosis, Bovine/microbiology , Tuberculosis, Bovine/prevention & control , Vaccination/methods , Vaccination/veterinary
2.
PLoS One ; 13(11): e0206136, 2018.
Article in English | MEDLINE | ID: mdl-30412584

ABSTRACT

The deployment of baits containing vaccines or toxins has been used successfully in the management of wildlife populations, including for disease control. Optimisation of deployment strategies seeks to maximise uptake by the targeted population whilst ensuring cost-effectiveness. Tuberculosis (TB) caused by infection with Mycobacterium bovis affects a broad range of mammalian hosts across the globe, including cattle, wildlife and humans. The control of TB in cattle in the UK and Republic of Ireland is hampered by persistent infection in European badgers (Meles meles). The present study aimed to determine the best strategy for maximising uptake of an oral vaccine by wild badgers, using a surrogate novel bait deployed at 40 badger social groups. Baits contained a blood-borne biomarker (Iophenoxic Acid, IPA) in order to measure consumption in badgers subsequently cage trapped at targeted setts. Evidence for the consumption of bait was found in 83% (199/240) of captured badgers. The probability that badgers had consumed at least one bait (IPA >10 µg ml-1) was significantly higher following deployment in spring than in summer. Lower uptake amongst social groups where more badgers were captured, suggested competition for baits. The probability of bait consumption was significantly higher at groups where main and outlier setts were provided with baits than at those where outliers were present but not baited. Badgers captured 10-14 days post bait feeding had significantly higher levels of bait uptake compared to those caught 24-28 days later. Uptake rates did not vary significantly in relation to badger age and whether bait was placed above ground or down setts. This study suggests that high levels of bait uptake can be achieved in wild badger populations and identifies factors influencing the potential success of different deployment strategies. The implications for the development of an oral badger vaccine are discussed.


Subject(s)
Disease Reservoirs/microbiology , Mustelidae/microbiology , Tuberculosis/prevention & control , Vaccination , Administration, Oral , Animals , BCG Vaccine/administration & dosage , Cattle , Humans , Ireland , Mycobacterium bovis/pathogenicity , Tuberculosis/epidemiology , Tuberculosis/microbiology , Tuberculosis/transmission , Tuberculosis, Bovine
3.
Vaccine ; 36(48): 7393-7398, 2018 11 19.
Article in English | MEDLINE | ID: mdl-30361121

ABSTRACT

Human-wildlife conflicts are increasing worldwide. For instance, growing numbers of free-roaming feral cattle in Hong Kong are causing traffic accidents and damaging crops. Public antipathy towards lethal methods to manage wildlife has promoted research into alternative options, such as fertility control. The aims of this study were to assess the potential side effects and effectiveness of the injectable immunocontraceptive vaccine GonaCon on free-roaming feral cattle in Hong Kong. Sixty female cattle were captured and randomly assigned to treatment or control groups. Treatment animals were administered one dose of GonaCon, followed by a booster dose 3-6 months later. Control animals were administered an equivalent dose of a saline solution. The side effects of GonaCon were assessed by monitoring injection site, body condition and body weight at vaccination, at the booster stage and one year after initial vaccination. At the same times, blood samples were collected to quantify antibodies to the vaccine and to assess pregnancy status. GonaCon did not affect the body weight or body condition of cattle and had no adverse side effects such as injection site reactions, limping or abnormal behaviour. GonaCon did not appear to interrupt ongoing pregnancies but reduced fertility significantly: the proportion of pregnant animals in the GonaCon-treated group decreased from 76% at initial vaccination to 6% one year after vaccination, compared to 67% and 57% respectively in the control group. There was no difference between antibody titres at the booster stage or one year post vaccination, suggesting the booster dose maintained antibody levels. This study confirmed that GonaCon is safe and effective in inducing infertility in feral cattle, with a booster dose critical for maintaining infertility.


Subject(s)
Animals, Wild , Contraception/veterinary , Pregnancy, Animal , Vaccines, Contraceptive/adverse effects , Animals , Antibodies/blood , Body Weight , Cattle , Contraception/methods , Contraception, Immunologic/methods , Contraception, Immunologic/veterinary , Female , Gonadotropin-Releasing Hormone/administration & dosage , Hong Kong , Immunization Schedule , Immunization, Secondary , Pregnancy , Vaccination/methods , Vaccination/veterinary , Vaccines, Contraceptive/administration & dosage
4.
Vaccine ; 35(34): 4402-4407, 2017 08 03.
Article in English | MEDLINE | ID: mdl-28689652

ABSTRACT

The control of tuberculosis (TB) in cattle in the UK and Ireland is compromised by transmission of Mycobacterium bovis to cattle from the European badger (Meles meles), which acts as a wildlife reservoir. Vaccination of badgers could potentially contribute to TB control but the only licensed vaccine is injectable BadgerBCG which requires the live-capture of badgers. Current research is aimed at developing an oral TB vaccine (where vaccine is contained within bait) that is intended to be more cost-effective to deploy over large areas. In order to identify a lead product, candidate baits identified from captive badger studies were evaluated in three successive bait screening studies with wild badgers. A fourth field study, using the lead candidate bait and biomarkers, investigated the effectiveness of different carriers for their potential to deliver liquid payloads (vaccine surrogate). In each field study, bait disappearance was monitored daily for ten days and remote video surveillance was used to determine preference (i.e. the order in which baits were taken). In the carrier study, biomarkers were used to determine what proportion of subsequently trapped badgers had ingested the bait and the vaccine-carrier biomarker payload. Across all four studies, 79% (3397/4330) of baits were taken by badgers although the number varied significantly by badger social group and bait type. In all studies, bait disappearance increased over time, with 75-100% of baits being taken by day ten. In the carrier study, 75% (9/12) of trapped badgers tested positive for at least one of the biomarkers and the type of carrier did not influence bait attractiveness. Together with data from complementary laboratory and captive animal studies, this study identified a highly attractive and palatable bait (peanut-based paste bait; PT) and vaccine-carrier (hydrogenated peanut oil; HPO) combination with the potential to deliver a liquid vaccine to wild badgers.


Subject(s)
BCG Vaccine/administration & dosage , Disease Reservoirs , Mustelidae , Tuberculosis, Bovine/prevention & control , Tuberculosis/veterinary , Vaccination/veterinary , Administration, Oral , Animals , Animals, Wild/immunology , Animals, Wild/microbiology , Arachis/chemistry , Cattle , Ireland/epidemiology , Mycobacterium bovis/immunology , Peanut Oil/administration & dosage , Tuberculosis/prevention & control , Tuberculosis, Bovine/microbiology , Vaccination/methods
5.
Proc Biol Sci ; 278(1713): 1913-20, 2011 Jun 22.
Article in English | MEDLINE | ID: mdl-21123260

ABSTRACT

Control of bovine tuberculosis (TB) in cattle has proven particularly challenging where reservoirs of infection exist in wildlife populations. In Britain and Ireland, control is hampered by a reservoir of infection in Eurasian badgers (Meles meles). Badger culling has positive and negative effects on bovine TB in cattle and is difficult, costly and controversial. Here we show that Bacillus Calmette-Guérin (BCG) vaccination of captive badgers reduced the progression, severity and excretion of Mycobacterium bovis infection after experimental challenge. In a clinical field study, BCG vaccination of free-living badgers reduced the incidence of positive serological test results by 73.8 per cent. In common with other species, BCG did not appear to prevent infection of badgers subjected to experimental challenge, but did significantly reduce the overall disease burden. BCG vaccination of badgers could comprise an important component of a comprehensive programme of measures to control bovine TB in cattle.


Subject(s)
BCG Vaccine/therapeutic use , Disease Reservoirs/veterinary , Mustelidae/immunology , Tuberculosis, Bovine/prevention & control , Animals , BCG Vaccine/immunology , Cattle , England , Mustelidae/blood , Mustelidae/microbiology , Mycobacterium bovis/immunology , Mycobacterium bovis/pathogenicity , Tuberculosis, Bovine/transmission
6.
J Anim Ecol ; 77(4): 735-45, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18355241

ABSTRACT

1. Direct interactions between individuals play an important part in the sociality of group-living animals, their mating system and disease transmission. Here, we devise a methodology to quantify relative rates of proximity interaction from radio-tracking data and highlight potential asymmetries within the contact network of a moderate-density badger population in the north-east of England. 2. We analysed radio-tracking data from four contiguous social groups, collected over a 3-year period. Dynamic interaction analysis of badger dyads was used to assess the movement of individuals in relation to the movement of others, both within and between social groups. Dyads were assessed with regard to season, sex, age and sett use pattern of the badgers involved. 3. Intragroup separation distances were significantly shorter than intergroup separation distances, and interactions between groups were rare. Within groups, individuals interacted with each other more often than expected, and interaction patterns varied significantly with season and sett use pattern. Non-mover dyads (using the main sett for day-resting on > 50% of occasions) interacted more frequently than mover dyads (using an outlier sett for day-resting on > 50% of occasions) or mover-non-mover dyads. Interactions between group members occurred most frequently in winter. 4. Of close intragroup interactions (< 50 m separation distance), 88.6% were associated with a main sett and only 4.4% with outlier setts. Non-mover dyads and non-mover-mover dyads interacted significantly more often at the main sett than mover-only dyads. These results highlight the importance of the main sett to badger sociality and support the suggestion that badger social groups are comprised of different subgroups, in our case based on differential sett use patterns. 5. Asymmetries in contact structure within a population will affect the way in which diseases are transmitted through a social network. Assessment of these networks is essential for understanding the persistence and spread of disease within populations which do not mix freely or which exhibit heterogeneities in their spatial or social behaviour.


Subject(s)
Disease Transmission, Infectious/veterinary , Mustelidae/physiology , Sexual Behavior, Animal/physiology , Social Behavior , Spatial Behavior/physiology , Animals , Cattle , Disease Reservoirs/veterinary , Female , Male , Mustelidae/microbiology , Population Dynamics , Seasons , Telemetry/veterinary , Tuberculosis, Bovine/epidemiology , Tuberculosis, Bovine/transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...