Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroendocrinol ; 29(12)2017 12.
Article in English | MEDLINE | ID: mdl-29024103

ABSTRACT

Interleukin (IL)-6- /- mice develop mature onset obesity, whereas i.c.v. injection of IL-6 decreases obesity in rodents. Moreover, levels of IL-6 in cerebrospinal fluid (CSF) were reported to be inversely correlated with obesity in humans. Tanycytes lining the base of the third ventricle (3V) in the hypothalamus have recently been reported to be of importance for metabolism. In the present study, we investigated whether tanycytes could respond to IL-6 in the CSF. With immunohistochemistry using a well characterised antibody directed against the ligand binding receptor for IL-6, IL-6 receptor α (IL-6Rα), it was found that tanycytes, identified by the two markers, vimentin and dopamine- and cAMP-regulated phosphoprotein of 32 kDa, contained IL-6Rα. There were fewer IL-6Rα on another type of ventricle-lining cells, ependymal cells, as identified by the marker glucose transporter-1. To demonstrate that the immunoreactive IL-6Rα were responsive to IL-6, we injected IL-6 i.c.v. This treatment increased immunoreactive phosphorylated signal transducer and activator of transcription-3 (pSTAT3) in tanycytes after 5 minutes and in cells in the medial part of the arcuate nucleus after 5 and 15 minutes. Intracerebroventricular injection of leptin exerted similar effects. As expected, i.p. injection of leptin also induced pSTAT3 staining in the hypothalamus, whereas i.p. IL-6 injection had little effect on this parameter. Intracerebroventricular or i.p. injection of vehicle only had no effect on pSTAT3-immunoreactivity. In summary, there are functional IL-6Rα on tanycytes at the bottom of the 3V, in agreement with the possibility that ventricular administration of IL-6 decreases obesity in mice via an effect on this cell type.


Subject(s)
Ependymoglial Cells/metabolism , Interleukin-6 Receptor alpha Subunit/metabolism , Third Ventricle/cytology , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Ependymoglial Cells/cytology , Female , Leptin/administration & dosage , Leptin/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , STAT3 Transcription Factor/metabolism , Signal Transduction
2.
J Neuroendocrinol ; 25(6): 580-9, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23414303

ABSTRACT

Interleukin (IL)-1 and IL-6 are immune modulating cytokines that also affect metabolic function because both IL-1 receptor I deficient (IL-1RI⁻/⁻) and IL-6 deficient (IL-6⁻/⁻) mice develop late-onset obesity and leptin resistance. Both IL-1 and IL-6 appear to target the central nervous system (CNS) to increase energy expenditure. The hypothalamic arcuate nucleus (ARC) is a major relay between the periphery and CNS in body fat regulation (e.g. by being a target of leptin). The present study aimed to investigate the possible mechanisms responsible for the effects exerted by endogenous IL-1 and IL-6 on body fat at the level of the ARC, as well as possible interactions between IL-1 and IL-6. Therefore, we measured the gene expression of neuropeptides of the ARC involved in energy balance in IL-1RI⁻/⁻ and IL-6⁻/⁻ mice. We also investigated the interactions between expression of IL-1 and IL-6 in these mice, and mapped IL-6 receptor α (IL-6Rα) in the ARC. The expression of the obesity promoting peptide neuropeptide Y (NPY), found in the ARC, was increased in IL-1RI⁻/⁻ mice. The expression of NPY and agouti-related peptide (AgRP), known to be co-expressed with NPY in ARC neurones, was increased in cold exposed IL-6⁻/⁻ mice. IL-6Rα immunoreactivity was densely localised in the ARC, especially in the medial part, and was partly found in NPY positive cell bodies and also α-melanocyte-stimulating hormone positive cell bodies. The expression of hypothalamic IL-6 was decreased in IL-1RI⁻/⁻ mice, whereas IL-1ß expression was increased in IL-6⁻/⁻ mice. The results of the present study indicate that depletion of the activity of the fat suppressing cytokines IL-1 and IL-6 in knockout mice can increase the expression of the obesity promoting neuropeptide NPY in the ARC. Depletion of IL-1 activity suppresses IL-6 expression, and IL-6Rα-like immunoreactivity is present in neurones in the medial ARC, including neurones containing NPY. Therefore, IL-6, IL-1 and NPY/AgRP could interact at the level of the hypothalamic ARC in the regulation of body fat.


Subject(s)
Adipose Tissue/physiology , Arcuate Nucleus of Hypothalamus/physiology , Body Composition , Interleukin-1/physiology , Interleukin-6/physiology , Animals , Base Sequence , DNA Primers , Hypothalamus/metabolism , Hypothalamus/physiology , Interleukin-1/genetics , Interleukin-1/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuropeptide Y/metabolism , Real-Time Polymerase Chain Reaction , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/metabolism , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/metabolism
3.
Am J Physiol Endocrinol Metab ; 292(5): E1418-25, 2007 May.
Article in English | MEDLINE | ID: mdl-17244725

ABSTRACT

To study the role of the growth hormone receptor (GHR) in the development of cardiovascular structure and function, female GHR gene-disrupted or knockout (KO) and wild-type (WT) mice at age 18 wk were used. GHR KO mice had lower plasma renin levels (12 +/- 2 vs. 20 +/- 4 mGU/ml, P < 0.05) and increased aortic endothelial NO synthase (eNOS) expression (146%, P < 0.05) accompanied by a 25% reduction in systolic blood pressure (BP, 110 +/- 4 vs. 147 +/- 3 mmHg, P < 0.001) compared with WT mice. Aldosterone levels were unchanged, whereas the plasma potassium concentration was elevated by 14% (P < 0.05) in GHR KO. Relative left ventricular weight was 14% lower in GHR KO mice (P < 0.05), and cardiac dimensions as analyzed by echocardiography were similarly reduced. Myograph studies revealed a reduced maximum contractile response in the aorta to norepinephrine (NE) and K(+) (P < 0.05), and aorta media thickness was decreased in GHR KO (P < 0.05). However, contractile force was normal in mesenteric arteries, whereas sensitivity to NE was increased (P < 0.05). Maximal acetylcholine-mediated dilatation was similar in WT and GHR KO mice, whereas the aorta of GHR KO mice showed an increased sensitivity to acetylcholine (P < 0.05). In conclusion, loss of GHR leads to low BP and decreased levels of renin in plasma as well as increase in aortic eNOS expression. Furthermore, GHR deficiency causes functional and morphological changes in both heart and vasculature that are beyond the observed alterations in body size. These data suggest an important role for an intact GH/IGF-I axis in the maintenance of a normal cardiovascular system.


Subject(s)
Blood Pressure/physiology , Cardiovascular System/metabolism , Nitric Oxide Synthase Type II/biosynthesis , Receptors, Somatotropin/deficiency , Renin/blood , Aldosterone/blood , Animals , Aorta, Thoracic/enzymology , Aorta, Thoracic/metabolism , Cardiovascular Physiological Phenomena , Echocardiography, Doppler , Electrocardiography , Female , Heart/anatomy & histology , Mice , Mice, Inbred BALB C , Mice, Knockout , Muscle Contraction/physiology , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type III , Organ Size , Potassium/blood , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...