Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 816: 151590, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-34774935

ABSTRACT

Woody riparian vegetation along rivers and streams provides multiple functions beneficial for aquatic macroinvertebrate communities. They retain fine sediments, nutrients and pesticides, improve channel hydromorphology, control water temperature and primary production through shading and provide leaves, twigs and large wood. In a recent conceptual model (Feld et al., 2018), woody riparian functions were considered either independent from large-scale landuse stressors (e.g. shading, input of organic matter), or dependent on landuse at larger spatial scales (e.g. fine sediment, nutrient and pesticide retention). We tested this concept using high-resolution data on woody riparian vegetation cover and empirical data from 1017 macroinvertebrate sampling sites in German lowland and mountain streams. Macroinvertebrate metrics indicative for individual functions were used as response variables in structural equation models (SEM), representing the hierarchical structure between the different considered stressors at different spatial scales: catchment, upstream riparian, local riparian and local landuse cover along with hydromorphology and water quality. The analysis only partly confirmed the conceptual model: Biotic integrity and water quality were strongly related to large-scale stressors as expected (absolute total effect 0.345-0.541), but against expectations, fine sediments retention, considered scale-dependent in the conceptual model, was poorly explained by large-scale stressors (absolute total effect 0.027-0.231). While most functions considered independent from large-scale landuse were partly explained by riparian landuse cover (absolute total effect 0.023-0.091) they also were nonetheless affected by catchment landuse cover (absolute total effect 0.017-0.390). While many empirical case studies at smaller spatial scales clearly document the positive effects of restoring woody riparian vegetation, our results suggest that most effects of riparian landuse cover are possibly superimposed by larger-scale stressors. This does not negate localized effects of woody riparian vegetation but helps contextualize limitations to successful restoration measures targeting the macroinvertebrate community.


Subject(s)
Environmental Monitoring , Invertebrates , Animals , Ecosystem , Models, Theoretical , Rivers , Water Quality
2.
Sci Total Environ ; 573: 1079-1088, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27632785

ABSTRACT

This work addresses human stressors and their impacts on fish assemblages at pan-European scale by analysing single and multiple stressors and their interactions. Based on an extensive dataset with 3105 fish sampling sites, patterns of stressors, their combination and nature of interactions, i.e. synergistic, antagonistic and additive were investigated. Geographical distribution and patterns of seven human stressor variables, belonging to four stressor groups (hydrological-, morphological-, water quality- and connectivity stressors), were examined, considering both single and multiple stressor combinations. To quantify the stressors' ecological impact, a set of 22 fish metrics for various fish assemblage types (headwaters, medium gradient rivers, lowland rivers and Mediterranean streams) was analysed by comparing their observed and expected response to different stressors, both acting individually and in combination. Overall, investigated fish sampling sites are affected by 15 different stressor combinations, including 4 stressors acting individually and 11 combinations of two or more stressors; up to 4 stressor groups per fish sampling site occur. Stressor-response analysis shows divergent results among different stressor categories, even though a general trend of decreasing ecological integrity with increasing stressor quantity can be observed. Fish metrics based on density of species 'intolerant to water quality degradation' and 'intolerant to oxygen depletion" responded best to single and multiple stressors and their interactions. Interactions of stressors were additive (40%), synergistic (30%) or antagonistic (30%), emphasizing the importance to consider interactions in multi-stressor analyses. While antagonistic effects are only observed in headwaters and medium-gradient rivers, synergistic effects increase from headwaters over medium gradient rivers and Mediterranean streams to large lowland rivers. The knowledge gained in this work provides a basis for advanced investigations in European river basins and helps prioritizing further restoration and management actions.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Environmental Monitoring/methods , Fishes/growth & development , Models, Theoretical , Rivers/chemistry , Animals , Climate Change , Conservation of Natural Resources/statistics & numerical data , Environmental Monitoring/statistics & numerical data , Europe , Eutrophication , Humans , Hydrology , Water Movements , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...