Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Funct Plant Biol ; 48(9): 839-850, 2021 08.
Article in English | MEDLINE | ID: mdl-33934747

ABSTRACT

Genotypic variation in transpiration (Tr) response to vapour pressure deficit (VPD) has been studied in many crop species. There is debate over whether shoots or roots drive these responses. We investigated how stomata coordinate with plant hydraulics to mediate Tr response to VPD and influence leaf water status in wheat (Triticum aestivum L.). We measured Tr and stomatal conductance (gs) responses to VPD in well-watered, water-stressed and de-rooted shoots of eight wheat genotypes. Tr response to VPD was related to stomatal sensitivity to VPD and proportional to gs at low VPD, except in the water-stressed treatment, which induced strong stomatal closure at all VPD levels. Moreover, gs response to VPD was driven by adaxial stomata. A simple linear Tr response to VPD was associated with unresponsive gs to VPD. In contrast, segmented linear Tr to VPD response was mostly a function of gs with the breakpoint depending on the capacity to meet transpirational demand and set by the shoots. However, the magnitude of Tr response to VPD was influenced by roots, soil water content and stomatal sensitivity to VPD. These findings, along with a theoretical model suggest that stomata coordinate with plant hydraulics to regulate Tr response to VPD in wheat.


Subject(s)
Plant Transpiration , Triticum , Plant Leaves , Plant Stomata , Vapor Pressure
2.
J Exp Bot ; 52(354): 123-31, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11181721

ABSTRACT

Terminal drought markedly reduces leaf photosynthesis of chickpea (Cicer arietinum L.) during seed filling. A study was initiated to determine whether photosynthesis and internal recycling of CO(2) by the pods can compensate for the low rate of photosynthesis in leaves under water deficits. The influence of water deficits on the rates of photosynthesis and transpiration of pods and subtending leaves in chickpea (cv. Sona) was investigated in two naturally-lit, temperature-controlled glasshouses. At values of photosynthetically active radiation (PAR) of 900 micromol m(-2) s(-1) and higher, the rate of net photosynthesis of subtending leaves of 10-d-old pods was 24 and 6 micromol m(-2) s(-1) in the well-watered (WW) and water-stressed (WS) plants when the covered-leaf water potential (Psi) was -0.6 and -1.4 MPa, respectively. Leaf photosynthesis further decreased to 4.5 and 0.5 micromol m(-2) s(-1) as Psi decreased to -2.3 and -3.3 MPa, respectively. At 900--1500 micromol m(-2) s(-1) PAR, the net photosynthetic rate of 10-d-old pods was 0.9-1.0 micromol m(-2) s(-1) in the WW plants and was -0.1 to -0.8 micromol m(-2) s(-1) in the WS plants. The photosynthetic rates of both pods and subtending leaves decreased with age, but the rate of transpiration of the pods increased with age. The rates of respiration and net photosynthesis inside the pods were estimated by measuring the changes in the internal concentration of CO(2) of covered and uncovered pods during the day. Both the WW and WS pods had similar values of internal net photosynthesis, but the WS pods showed significantly higher rates of respiration suggesting that the WS pods had higher gross photosynthetic rates than the WW pods, particularly in the late afternoon. When (13)CO(2) was injected into the gas space inside the pod, nearly 80% of the labelled carbon 24 h after injection was observed in the pod wall in both the WW and WS plants. After 144 h the proportion of (13)C in the seed had increased from 19% to 32% in both treatments. The results suggest that internal recycling of CO(2) inside the pod may assist in maintaining seed filling in water-stressed chickpea.


Subject(s)
Carbon Dioxide/physiology , Magnoliopsida/physiology , Seeds/physiology , Water/physiology , Light , Photosynthesis/physiology , Photosynthesis/radiation effects , Plant Leaves/physiology , Plant Transpiration
SELECTION OF CITATIONS
SEARCH DETAIL
...