Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Funct Biomater ; 14(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37504843

ABSTRACT

Platinum nanoparticles (nPts) have neuroprotective/antioxidant properties, but the mechanisms of their action in cerebrovascular disease remain unclear. We investigated the brain bioavailability of nPts and their effects on brain damage, cerebral blood flow (CBF), and development of brain and systemic oxidative stress (OS) in a model of cerebral ischemia (hemorrhage + temporary bilateral common carotid artery occlusion, tBCAO) in rats. The nPts (0.04 g/L, 3 ± 1 nm diameter) were administered to rats (N = 19) intraperitoneally at the start of blood reperfusion. Measurement of CBF via laser Doppler flowmetry revealed that the nPts caused a rapid attenuation of postischemic hypoperfusion. The nPts attenuated the apoptosis of hippocampal neurons, the decrease in reduced aminothiols level in plasma, and the glutathione redox status in the brain, which were induced by tBCAO. The content of Pt in the brain was extremely low (≤1 ng/g). Thus, nPts, despite the extremely low brain bioavailability, can attenuate the development of brain OS, CBF dysregulation, and neuronal apoptosis. This may indicate that the neuroprotective effects of nPts are due to indirect mechanisms rather than direct activity in the brain tissue. Research on such mechanisms may offer a promising trend in the treatment of acute disorders of CBF.

2.
J Cardiovasc Pharmacol ; 72(4): 195-203, 2018 10.
Article in English | MEDLINE | ID: mdl-30188870

ABSTRACT

Cerebral ischemia has previously been shown to cause a systemic decrease in levels of the reduced forms of low-molecular-weight aminothiols [cysteine (Cys), homocysteine (Hcy), and glutathione (GSH)] in blood plasma. In this study, we examined the effect of beta-adrenergic receptor (ß-AR) antagonists metoprolol (Met) and nebivolol (Neb) on the redox status of these aminothiols during acute cerebral ischemia in rats. We used a model of global cerebral ischemia (bilateral occlusion of common carotid arteries with hypotension lasting for 10 minutes). The antagonists were injected 1 hour before surgery. Total and reduced Cys, Hcy, and GSH levels were measured 40 minutes after the start of reperfusion. Neb (0.4 and 4 mg/kg) and Met (8 and 40 mg/kg) treatment increased the levels of reduced aminothiols and the global methylation index in the hippocampus. The treatments also prevented any decrease in reduced aminothiol levels in blood plasma during ischemia. Although both of these drugs eliminated delayed postischemic hypoperfusion, only Neb reduced neuronal damage in the hippocampus. The results indicate an essential role of ß1-AR blockage in the maintenance of redox homeostasis of aminothiols in the plasma and brain during acute cerebral ischemia.


Subject(s)
Adrenergic beta-1 Receptor Antagonists/pharmacology , Brain Ischemia/drug therapy , Cysteine/blood , Glutathione/blood , Hippocampus/drug effects , Homocysteine/blood , Metoprolol/pharmacology , Nebivolol/pharmacology , Neuroprotective Agents/pharmacology , Acute Disease , Animals , Brain Ischemia/blood , Brain Ischemia/pathology , Brain Ischemia/physiopathology , Cerebrovascular Circulation/drug effects , Disease Models, Animal , Hippocampus/metabolism , Hippocampus/pathology , Male , Molecular Weight , Oxidation-Reduction , Rats
3.
Redox Rep ; 22(6): 460-466, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28393660

ABSTRACT

OBJECTIVE: Recent studies have shown that cerebral ischaemia causes not only local, but also systemic oxidative stress. This leads to oxidation of thiol-containing compounds, including low-molecular-weight thiols (cysteine, glutathione, homocysteine and others). Therefore, the aim of this work was to verify the hypothesis that the thiol/disulphide homeostasis of low-molecular-weight thiols is disturbed in the early stages of cerebral ischaemia. METHODS: Two experimental rat models of ischaemia were used: a global model of vascular ischaemia (clamping the common carotid arteries + haemorrhage) and focal ischaemia (middle cerebral artery occlusion). The total levels of thiols and their reduced forms were measured before surgery and after 40 minutes of reperfusion (global) or 3 hours (focal) ischaemia. RESULTS: The global ischaemia model caused a marked (2.5-4 times, P < 0.01) decrease in the plasma thiol/disulphide redox state, and focal ischaemia caused an even larger decrease (30-80 times, P < 0.001). DISCUSSION: These results suggest that plasma low-molecular-weight thiols are actively involved in oxidation reactions at early stages of cerebral ischaemia; therefore, their reduced forms or redox state may serve as a sensitive indicator of acute cerebrovascular insufficiency.


Subject(s)
Biomarkers/blood , Brain Ischemia/blood , Disulfides/blood , Sulfhydryl Compounds/blood , Animals , Glutathione/blood , Homeostasis/physiology , Male , Oxidation-Reduction , Oxidative Stress/physiology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...