Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Extracell Biol ; 2(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-37942280

ABSTRACT

Extracellular vesicles (EVs) are membrane-bound structures released by cells and tissues into biofluids, involved in cell-cell communication. In humans, circulating red blood cells (RBCs), represent the most common cell-type in the body, generating daily large numbers of microvesicles. In vitro, RBC vesiculation can be mimicked by stimulating RBCs with calcium ionophores, such as ionomycin and A23187. The fate of microvesicles released during in vivo aging of RBCs and their interactions with circulating cells is hitherto unknown. Using SEC plus DEG isolation methods, we have found that human RBCs generate microvesicles with two distinct sizes, densities, and protein composition, identified by flow cytometry, and MRPS, and further validated by immune TEM. Furthermore, proteomic analysis revealed that RBC-derived microvesicles (RBC-MVs) are enriched in proteins with important functions in ion channel regulation, calcium homeostasis, and vesicular transport, such as of sorcin, stomatin, annexin A7, and RAB proteins. Cryo-electron microscopy identified two separate pathways of RBC-MV-neutrophil interaction, direct fusion with the plasma membrane and internalization, respectively. Functionally, RBC-MVs decrease neutrophil ability to phagocytose E. coli but do not affect their survival at 24 hrs. This work brings new insights regarding the complexity of the RBC-MVs biogenesis, as well as their possible role in circulation.

2.
Oncology ; 100(8): 419-428, 2022.
Article in English | MEDLINE | ID: mdl-35709702

ABSTRACT

INTRODUCTION: Inducible co-stimulator (ICOS), an important co-stimulatory receptor on effector T cells (Teffs), may also contribute to tumor growth due to its high expression on regulatory T cells (Tregs). This study explored the clinical significance of ICOS-expressing Tregs in hepatocellular carcinoma (HCC). METHODS: Tumor tissues from HCC patients who received curative hepatectomy were obtained at a referral center. Dual immunohistochemistry was performed to evaluate the expression of ICOS and Foxp3. The cell densities and proximities between stained cells in regions of interest were measured by digital pathology and the associations with clinical outcome were analyzed. RESULTS: A total of 142 patients (male:female = 112: 30, median age of 61.0 years) were enrolled. Among them, 87 (61.3%) had chronic hepatitis B virus infection and 33 (23.2%) had chronic hepatitis C infection. Low α-fetoprotein level (<20 ng/mL) and early-stage were significantly associated with improved overall survival (OS). The density of ICOS+Foxp3+ cells and the ratio of ICOS+Foxp3+/total Foxp3+ cells were significantly higher (p < 0.001) in the tumor center than in the peritumor area. Patients with a high density of ICOS+Foxp3+ cells or a high ratio of ICOS+Foxp3+/total Foxp3+ cells in the tumor center trended to have a shorter OS. A shorter distance between ICOS+Foxp3+ cells and ICOS+Foxp3- cells (likely Teffs) in the tumor center was significantly associated with a shorter OS (p = 0.030), suggesting active immunosuppression of ICOS+ Tregs on ICOS+ Teffs. CONCLUSION: An increased abundance of ICOS+ Tregs in the tumor center in comparison to the peritumor area indicates a strong immunosuppressive tumor microenvironment of HCC. A high proportion of ICOS+Foxp3+ cells and a shorter distance between ICOS+ Tregs and other ICOS+ cells were associated with a poor OS, suggesting that depleting ICOS+ Tregs might provide clinical benefit for patients with HCC.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B, Chronic , Liver Neoplasms , Carcinoma, Hepatocellular/pathology , Female , Forkhead Transcription Factors/metabolism , Humans , Inducible T-Cell Co-Stimulator Protein/metabolism , Liver Neoplasms/pathology , Male , Middle Aged , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/pathology , Tumor Microenvironment
3.
Equine Vet J ; 53(3): 618-627, 2021 May.
Article in English | MEDLINE | ID: mdl-32484928

ABSTRACT

BACKGROUND: Physical exercise is an essential factor in preventing and treating metabolic diseases by promoting systemic benefits throughout the body. The molecular factors involved in this process are poorly understood. Micro RNAs (miRNAs) are small non-coding RNAs that inhibit mRNA transcription. MiRNAs, which can participate in the benefits of exercise to health, circulate in plasma in extracellular particles (EP). Horses that undergo endurance racing are an excellent model to study the impact of long-duration/low intensity exercise in plasma EP miRNAs. OBJECTIVES: To evaluate the effects of 160 km endurance racing on horse plasma extracellular particles and their miRNA population. STUDY DESIGN: Cohort study. METHODS: We collected plasma from five Arabian horses during five time-points of an endurance ride. Extracellular particles were purified from plasma and characterised by electron microscopy, resistive pulse sensing (qNano) and western blotting. Small RNAs were purified from horse plasma EP, and sequencing was performed. RESULTS: Endurance racing increased EP concentration and average diameter compared to before the race. Western blotting showed a high concentration of extracellular vesicles proteins 2 hours after the race, which returned to baseline 15 hours after the race. MicroRNA differential expression analysis revealed increasing levels of eca-miR-486-5p during and after the race, and decreasing levels of eca-miR-9083 after the end. CONCLUSIONS: This study adds new data about the variation in plasma EP concentrations after long-distance exercise and brings new insights about the roles of exercise-derived EP miRNAs during low-intensity endurance exercise.


Subject(s)
MicroRNAs , Physical Conditioning, Animal , Animals , Cohort Studies , Horses , MicroRNAs/genetics , Physical Endurance , Plasma
4.
Front Genet ; 10: 356, 2019.
Article in English | MEDLINE | ID: mdl-31139204

ABSTRACT

One of the key challenges for transcriptomics-based research is not only the processing of large data but also modeling the complexity of features that are sources of variation across samples, which is required for an accurate statistical analysis. Therefore, our goal is to foster access for wet lab researchers to bioinformatics tools, in order to enhance their ability to explore biological aspects and validate hypotheses with robust analysis. In this context, user-friendly interfaces can enable researchers to apply computational biology methods without requiring bioinformatics expertise. Such bespoke platforms can improve the quality of the findings by allowing the researcher to freely explore the data and test a new hypothesis with independence. Simplicity DiffExpress is a data-driven software platform dedicated to enabling non-bioinformaticians to take ownership of the differential expression analysis (DEA) step in a transcriptomics experiment while presenting the results in a comprehensible layout, which supports an efficient results exploration, information storage, and reproducibility. Simplicity DiffExpress' key component is the bespoke statistical model validation that guides the user through any necessary alteration in the dataset or model, tackling the challenges behind complex data analysis. The software utilizes edgeR, and it is implemented as part of the SimplicityTM platform, providing a dynamic interface, with well-organized results that are easy to navigate and are shareable. Computational biologists and bioinformaticians can also benefit from its use since the data validation is more informative than the usual DEA resources. Wet-lab collaborators can benefit from receiving their results in an organized interface. Simplicity DiffExpress is freely available for academic use, and it is cloud-based (https://simplicity.nsilico.com/dea).

5.
Front Physiol ; 9: 532, 2018.
Article in English | MEDLINE | ID: mdl-29881354

ABSTRACT

Physical exercise stimulates organs, mainly the skeletal muscle, to release a broad range of molecules, recently dubbed exerkines. Among them, RNAs, such as miRNAs, piRNAs, and tRNAs loaded in extracellular vesicles (EVs) have the potential to play a significant role in the way muscle and other organs communicate to translate exercise into health. Low, moderate and high intensity treadmill protocols were applied to rat groups, aiming to investigate the impact of exercise on serum EVs and their associated small RNA molecules. Transmission electron microscopy, resistive pulse sensing, and western blotting were used to investigate EVs morphology, size distribution, concentration and EVs marker proteins. Small RNA libraries from EVs RNA were sequenced. Exercise did not change EVs size, while increased EVs concentration. Twelve miRNAs were found differentially expressed after exercise: rno-miR-128-3p, 103-3p, 330-5p, 148a-3p, 191a-5p, 10b-5p, 93-5p, 25-3p, 142-5p, 3068-3p, 142-3p, and 410-3p. No piRNA was found differentially expressed, and one tRNA, trna8336, was found down-regulated after exercise. The differentially expressed miRNAs were predicted to target genes involved in the MAPK pathway. A single bout of exercise impacts EVs and their small RNA load, reinforcing the need for a more detailed investigation into EVs and their load as mediators of health-promoting exercise.

SELECTION OF CITATIONS
SEARCH DETAIL
...