Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Annu Rev Vis Sci ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635876

ABSTRACT

Animal models are critical for understanding the initiation and progression of myopia, a refractive condition that causes blurred distance vision. The prevalence of myopia is rapidly increasing worldwide, and myopia increases the risk of developing potentially blinding diseases. Current pharmacological, optical, and environmental interventions attenuate myopia progression in children, but it is still unclear how this occurs or how these interventions can be improved to increase their protective effects. To optimize myopia interventions, directed mechanistic studies are needed. The mouse model is well-suited to these studies because of its well-characterized visual system and the genetic experimental tools available, which can be combined with pharmacological and environmental manipulations for powerful investigations of causation. This review describes aspects of the mouse visual system that support its use as a myopia model and presents genetic, pharmacological, and environmental studies that significantly contribute to our understanding of the mechanisms that underlie myopigenesis.

2.
Mol Ther Methods Clin Dev ; 25: 111-123, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35402632

ABSTRACT

During inherited retinal degenerations (IRDs), vision is lost due to photoreceptor cell death; however, a range of optogenetic tools have been shown to restore light responses in animal models. Restored response characteristics vary between tools and the neuronal cell population to which they are delivered: the interplay between these is complex, but targeting upstream neurons (such as retinal bipolar cells) may provide functional benefit by retaining intraretinal signal processing. In this study, our aim was to compare two optogenetic tools: mammalian melanopsin (hOPN4) and microbial red-shifted channelrhodopsin (ReaChR) expressed within two subpopulations of surviving cells in a degenerate retina. Intravitreal adeno-associated viral vectors and mouse models utilising the Cre/lox system restricted expression to populations dominated by bipolar cells or retinal ganglion cells and was compared with non-targeted delivery using the chicken beta actin (CBA) promoter. In summary, we found bipolar-targeted optogenetic tools produced faster kinetics and flatter intensity-response relationships compared with non-targeted or retinal-ganglion-cell-targeted hOPN4. Hence, optogenetic tools of both mammalian and microbial origins show advantages when targeted to bipolar cells. This demonstrates the advantage of bipolar-cell-targeted optogenetics for vision restoration in IRDs. We therefore developed a bipolar-cell-specific gene delivery system employing a compressed promoter with the potential for clinical translation.

3.
Ophthalmologe ; 119(4): 358-366, 2022 Apr.
Article in German | MEDLINE | ID: mdl-34350494

ABSTRACT

BACKGROUND: Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGC) area third class of photoreceptors in the retina in addition to rods and cones. They are a small heterogeneous population of cells primarily mediating non-image-forming visual functions. OBJECTIVE: This article provides an overview of the current understanding of the functions and the diversity of ipRGCs. It moreover gives an insight into clinically and translationally relevant aspects and treatment options. MATERIAL AND METHODS: Narrative review article. RESULTS: ipRGCs make up ~1-2% of all retinal ganglion cells and are divided into 6 specialized subtypes. With the photopigment melanopsin they can trigger light responses without rod or cone input and can relay irradiance information to various centers of the brain. Depending on the subtype, ipRGCs mediate non-image-forming tasks, such as the pupillary light reflex or synchronizing the circadian clock, and image-forming tasks, such as contrast optimization. ipRGCs exhibit differential resilience against optic nerve damage, making them an interesting study object for the development of neuroprotective strategies. In addition, melanopsin is an attractive optogenetic tool for vision restoration. CONCLUSION: Knowledge on ipRGC physiology is indispensable for understanding frequent clinical observations. Their functional and morphological features are the subject of active research, which highlights novel translational strategies.


Subject(s)
Optic Nerve Injuries , Retinal Ganglion Cells , Humans , Light , Retina/physiology , Retinal Cone Photoreceptor Cells , Retinal Ganglion Cells/physiology , Vision, Ocular
4.
J Alzheimers Dis ; 85(2): 715-728, 2022.
Article in English | MEDLINE | ID: mdl-34864665

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is an age-dependent progressive neurodegenerative disorder and the most common cause of dementia. The treatment and prevention of AD present immense yet unmet needs. One of the hallmarks of AD is the formation of extracellular amyloid plaques in the brain, composed of amyloid-ß (Aß) peptides. Besides major amyloid-targeting approach there is the necessity to focus also on alternative therapeutic strategies. One factor contributing to the development of AD is dysregulated copper metabolism, reflected in the intracellular copper deficit and excess of extracellular copper. OBJECTIVE: In the current study, we follow the widely accepted hypothesis that the normalization of copper metabolism leads to the prevention or slowing of the disease and search for new copper-regulating ligands. METHODS: We used cell culture, ICP MS, and Drosophila melanogaster models of AD. RESULTS: We demonstrate that the natural intracellular copper chelator, α-lipoic acid (LA) translocates copper from extracellular to intracellular space in an SH-SY5Y-based neuronal cell model and is thus suitable to alleviate the intracellular copper deficit characteristic of AD neurons. Furthermore, we show that supplementation with LA protects the Drosophila melanogaster models of AD from developing AD phenotype by improving locomotor activity of fruit fly with overexpression of human Aß with Iowa mutation in the fly brain. In addition, LA slightly weakens copper-induced smooth eye phenotype when amyloid-ß protein precursor (AßPP) and beta-site AßPP cleaving enzyme 1 (BACE1) are overexpressed in eye photoreceptor cells. CONCLUSION: Collectively, these results provide evidence that LA has the potential to normalize copper metabolism in AD.


Subject(s)
Alzheimer Disease/metabolism , Copper/metabolism , Neurons/metabolism , Thioctic Acid/pharmacology , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Brain/metabolism , Brain/pathology , Cell Line , Disease Models, Animal , Drosophila melanogaster , Humans
5.
Nat Commun ; 12(1): 2113, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33837202

ABSTRACT

The accumulation of adenosine is strongly correlated with the need for sleep and the detection of sleep pressure is antagonised by caffeine. Caffeine also affects the circadian timing system directly and independently of sleep physiology, but how caffeine mediates these effects upon the circadian clock is unclear. Here we identify an adenosine-based regulatory mechanism that allows sleep and circadian processes to interact for the optimisation of sleep/wake timing in mice. Adenosine encodes sleep history and this signal modulates circadian entrainment by light. Pharmacological and genetic approaches demonstrate that adenosine acts upon the circadian clockwork via adenosine A1/A2A receptor signalling through the activation of the Ca2+ -ERK-AP-1 and CREB/CRTC1-CRE pathways to regulate the clock genes Per1 and Per2. We show that these signalling pathways converge upon and inhibit the same pathways activated by light. Thus, circadian entrainment by light is systematically modulated on a daily basis by sleep history. These findings contribute to our understanding of how adenosine integrates signalling from both light and sleep to regulate circadian timing in mice.


Subject(s)
Adenosine/metabolism , Chronobiology Disorders/physiopathology , Circadian Clocks/drug effects , Sleep/physiology , Animals , Brain/pathology , Caffeine/pharmacology , Cell Line, Tumor , Chronobiology Disorders/drug therapy , Chronobiology Disorders/etiology , Chronobiology Disorders/pathology , Circadian Clocks/physiology , Circadian Rhythm/drug effects , Circadian Rhythm/physiology , Disease Models, Animal , Humans , Light , Male , Mice , Mice, Transgenic , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Photoperiod , Quinazolines/administration & dosage , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A2A/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Signal Transduction/radiation effects , Sleep/drug effects , Sleep Deprivation/complications , Triazoles/administration & dosage
6.
Exp Eye Res ; 207: 108553, 2021 06.
Article in English | MEDLINE | ID: mdl-33811915

ABSTRACT

PURPOSE: Retinal bipolar cells survive even in the later stages of inherited retinal degenerations (IRDs) and so are attractive targets for optogenetic approaches to vision restoration. However, it is not known to what extent the remodelling that these cells undergo during degeneration affects their function. Specifically, it is unclear if they are free from metabolic stress, receptive to adeno-associated viral vectors, suitable for opsin-based optogenetic tools and able to propagate signals by releasing neurotransmitter. METHODS: Fluorescence activated cell sorting (FACS) was performed to isolate labelled bipolar cells from dissociated retinae of litter-mates with or without the IRD mutation Pde6brd1/rd1 selectively expressing an enhanced yellow fluorescent protein (EYFP) as a marker in ON-bipolar cells. Subsequent mRNA extraction allowed Illumina® microarray comparison of gene expression in bipolar cells from degenerate to those of wild type retinae. Changes in four candidate genes were further investigated at the protein level using retinal immunohistochemistry over the course of degeneration. RESULTS: A total of sixty differentially expressed transcripts reached statistical significance: these did not include any genes directly associated with native primary bipolar cell signalling, nor changes consistent with metabolic stress. Four significantly altered genes (Srm2, Slf2, Anxa7 & Cntn1), implicated in synaptic remodelling, neurotransmitter release and viral vector entry had immunohistochemical staining colocalising with ON-bipolar cell markers and varying over the course of degeneration. CONCLUSION: Our findings suggest relatively few gene expression changes in the context of degeneration: that despite remodelling, bipolar cells are likely to remain viable targets for optogenetic vision restoration. In addition, several genes where changes were seen could provide a basis for investigations to enhance the efficacy of optogenetic therapies.


Subject(s)
Annexin A7/genetics , Contactin 1/genetics , Gene Expression Regulation/physiology , Retinal Bipolar Cells/metabolism , Retinal Degeneration/genetics , Spermidine Synthase/genetics , Sulfatases/genetics , Animals , Dependovirus/genetics , Female , Flow Cytometry , Genetic Vectors , Immunohistochemistry , Mice , Mice, Transgenic , Optogenetics , Real-Time Polymerase Chain Reaction
7.
Invest Ophthalmol Vis Sci ; 61(3): 33, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32191288

ABSTRACT

Purpose: To characterize the retinal expression and localization of Kcne2, an ancillary (ß) ion-channel subunit with an important role in fine-tuning cellular excitability. Methods: We analyzed available single-cell transcriptome data from tens of thousands of murine retinal cells for cell-type-specific expression of Kcne2 using state-of-the-art bioinformatics techniques. This evidence at the transcriptome level was complemented with a comprehensive immunohistochemical characterization of mouse retina (C57BL/6, ages 8-12 weeks) employing co-labeling techniques and cell-type-specific antibody markers. We furthermore examined how conserved the Kcne2 localization pattern in the retina was across species by performing immunostaining on zebrafish, cowbird, sheep, mice, and macaque. Results: Kcne2 is distinctly expressed in cone photoreceptors and rod bipolar cells. At a subcellular level, the bulk of Kcne2 immunoreactivity can be observed in the outer plexiform layer. Here, it localizes into cone pedicles and likely the postsynaptic membrane of the rod bipolar cells. Thus, the vast majority of Kcne2 immunoreactivity is observed in a thin band in the outer plexiform layer. In addition to this, faint Kcne2 immunoreactivity can also be observed in cone inner segments and the somata of a small subset of cone ON bipolar cells. Strikingly, the localization of Kcne2 in the outer plexiform layer was preserved among all of the species studied, spanning at least 300 million years of evolution of the vertebrate kingdom. Conclusions: The data we present here suggest an important and specific role for Kcne2 in the highly specialized photoreceptor-bipolar cell synapse.


Subject(s)
Gene Expression Regulation/physiology , Potassium Channels, Voltage-Gated/genetics , Retinal Bipolar Cells/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Animals , CHO Cells , Computational Biology , Cricetulus , Immunohistochemistry , Macaca mulatta , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Sheep , Songbirds , Synapses , Transfection , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...