Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Medicina (Kaunas) ; 60(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38929617

ABSTRACT

Injuries represent a serious concern for football players, with a significant loss in terms of sport participation and long periods of rehabilitation. According to the 2019/20 UEFA Élite Club Injury Report, the average incidence of injuries during training is 2.8 per 1000 h of training, with an average absence from training of 20 days. In addition, injured athletes are 4 to 7 times more likely to relapse than uninjured athletes. High workloads and reduced recovery periods represent two of the most important modifiable risk factors. In this context, prevention and an adequate rehabilitation protocol are vital in managing injuries, reducing their incidence, and improving the return to competition. In recent years, technological development has provided new tools in rehabilitation, and Virtual reality (VR) has shown interesting results in treating neurologic and orthopedic pathologies. Virtual Reality (VR) technology finds application in the sports industry as a tool to examine athletes' technical movements. The primary objective is to detect the biomechanical risk factors associated with anterior cruciate ligament injury. Additionally, VR can be used to train athletes in field-specific techniques and create safe and controlled therapeutic environments for post-injury recovery. Moreover, VR offers a customizable approach to treatment based on individual player data. It can be employed for both prevention and rehabilitation, tailoring the rehabilitation and training protocols according to the athletes' specific needs.


Subject(s)
Athletic Injuries , Virtual Reality , Humans , Athletic Injuries/rehabilitation , Athletic Injuries/prevention & control , Soccer/injuries , Risk Factors , Anterior Cruciate Ligament Injuries/rehabilitation , Athletes/statistics & numerical data
2.
Sensors (Basel) ; 23(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36772757

ABSTRACT

In recent years, next to conventional rehabilitation's techniques, new technologies have been applied in stroke rehabilitation. In this context, fully immersive virtual reality (FIVR) has showed interesting results thanks to the level of immersion of the subject in the illusional world, with the feeling of being a real part of the virtual environment. This study aims to investigate the efficacy of FIVR in stroke rehabilitation. PubMed, Web of Science and Scopus were screened up to November 2022 to identify eligible randomized controlled trials (RCTs). Out of 4623, we included 12 RCTs involving post-acute and chronic stroke survivors, with a total of 350 patients (234 men and 115 women; mean age 58.36 years). High heterogeneity of the outcomes considered, the results showed that FIVR provides additional benefits, in comparison with standard rehabilitation. In particular, results showed an improvement in upper limb dexterity, gait performance and dynamic balance, influencing patient independence. Therefore, FIVR represents an adaptable, multi-faceted rehabilitation tool that can be considered in post-stroke rehabilitation, improving the compliance of the patients to the treatment and increasing the level of functioning and quality of life of stroke survivors.


Subject(s)
Stroke Rehabilitation , Stroke , Virtual Reality , Male , Female , Humans , Middle Aged , Stroke Rehabilitation/methods , Stroke/therapy , Activities of Daily Living , Gait
3.
Sensors (Basel) ; 22(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36298059

ABSTRACT

In the world reference context, although virtual reality, augmented reality and mixed reality have been emerging methodologies for several years, only today technological and scientific advances have made them suitable to revolutionize clinical care and medical contexts through the provision of enhanced functionalities and improved health services. This systematic review provides the state-of-the-art applications of the Microsoft® HoloLens 2 in a medical and healthcare context. Focusing on the potential that this technology has in providing digitally supported clinical care, also but not only in relation to the COVID-19 pandemic, studies that proved the applicability and feasibility of HoloLens 2 in a medical and healthcare scenario were considered. The review presents a thorough examination of the different studies conducted since 2019, focusing on HoloLens 2 medical sub-field applications, device functionalities provided to users, software/platform/framework used, as well as the study validation. The results provided in this paper could highlight the potential and limitations of the HoloLens 2-based innovative solutions and bring focus to emerging research topics, such as telemedicine, remote control and motor rehabilitation.


Subject(s)
Augmented Reality , COVID-19 , Virtual Reality , Humans , Pandemics , Delivery of Health Care
4.
Article in English | MEDLINE | ID: mdl-35409836

ABSTRACT

Padel is a racket sport that has been gaining great popularity and scientific interest in recent years. It could be considered to be a high-intensity intermittent sport with valuable cardiovascular and neuromuscular benefits; however, the risk of injury cannot be neglected. To date, there is still a gap of knowledge in the scientific literature on this emergent sport. Therefore, the present review aims to synthetize the current knowledge on padel game dynamics to better characterize the main risk factors, the injury rate and characteristics, and the most effective rehabilitative treatment strategies. PubMed, Scopus, Cochrane, and PEDro were screened up to January 2022 to identify eligible studies focusing on padel players as participants. Out of 160 records, we included 19 studies, which were focused on match analysis, anthropometric and physical training, the risk of injury, and rehabilitative interventions. The results showed that the high action velocity and the sudden changes in direction during a padel match could represent a risk factor for injuries, especially in untrained players. However, the high heterogeneity of the studies in the literature hinders our ability to draw any strong conclusions, and the results should be carefully considered. Future research should address the lack of knowledge on injury mechanisms and type to implement a tailored rehabilitation program.


Subject(s)
Medicine , Sports , Anthropometry , Exercise , Humans , Risk Factors
5.
Sensors (Basel) ; 22(1)2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35009860

ABSTRACT

Brain-computer interfaces (BCI) can detect specific EEG patterns and translate them into control signals for external devices by providing people suffering from severe motor disabilities with an alternative/additional channel to communicate and interact with the outer world. Many EEG-based BCIs rely on the P300 event-related potentials, mainly because they require training times for the user relatively short and provide higher selection speed. This paper proposes a P300-based portable embedded BCI system realized through an embedded hardware platform based on FPGA (field-programmable gate array), ensuring flexibility, reliability, and high-performance features. The system acquires EEG data during user visual stimulation and processes them in a real-time way to correctly detect and recognize the EEG features. The BCI system is designed to allow to user to perform communication and domotic controls.


Subject(s)
Brain-Computer Interfaces , Brain , Computers , Electroencephalography , Event-Related Potentials, P300 , Humans , Reproducibility of Results , User-Computer Interface
6.
Sensors (Basel) ; 21(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34770477

ABSTRACT

Monitoring physical activity in medical and clinical rehabilitation, in sports environments or as a wellness indicator is helpful to measure, analyze and evaluate physiological parameters involving the correct subject's movements. Thanks to integrated circuit (IC) technologies, wearable sensors and portable devices have expanded rapidly in monitoring physical activities in sports and tele-rehabilitation. Therefore, sensors and signal acquisition devices became essential in the tele-rehabilitation path to obtain accurate and reliable information by analyzing the acquired physiological signals. In this context, this paper provides a state-of-the-art review of the recent advances in electroencephalogram (EEG), electrocardiogram (ECG) and electromyogram (EMG) signal monitoring systems and sensors that are relevant to the field of tele-rehabilitation and health monitoring. Mostly, we focused our contribution in EMG signals to highlight its importance in rehabilitation context applications. This review focuses on analyzing the implementation of sensors and biomedical applications both in literature than in commerce. Moreover, a final review discussion about the analyzed solutions is also reported at the end of this paper to highlight the advantages of physiological monitoring systems in rehabilitation and individuate future advancements in this direction. The main contributions of this paper are (i) the presentation of interesting works in the biomedical area, mainly focusing on sensors and systems for physical rehabilitation and health monitoring between 2016 and up-to-date, and (ii) the indication of the main types of commercial sensors currently being used for biomedical applications.


Subject(s)
Electrocardiography , Sports , Electroencephalography , Electromyography , Monitoring, Physiologic
7.
Sensors (Basel) ; 21(21)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34770548

ABSTRACT

Adopting telemonitoring services during the pandemic for people affected by chronic disease is fundamental to ensure access to health care services avoiding the risk of COVID-19 infection. Among chronic diseases, Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig's disease, is a progressive neurodegenerative disease of adulthood, caused by the loss of spinal, bulbar and cortical motor neurons, which leads to paralysis of the voluntary muscles and, also, involves respiratory ones. Therefore, remote monitoring and teleconsulting are essential services for ALS patients with limited mobility, as the disease progresses, and for those living far from ALS centres and hospitals. In addition, the COVID 19 pandemic has increased the need to remotely provide the best care to patients, avoiding infection during ALS centre visits. The paper illustrates an innovative, secure medical monitoring and teleconsultation mobile cloud-based system for disabled people, such as those with ALS (Amyotrophic Lateral Sclerosis). The design aims to remotely monitor biosignals, such as ECG (electrocardiographic) and EMG (electromyographic) signals of ALS patients in order to prevent complications related to the pathology.


Subject(s)
Amyotrophic Lateral Sclerosis , COVID-19 , Neurodegenerative Diseases , Adult , Amyotrophic Lateral Sclerosis/diagnosis , Cloud Computing , Humans , SARS-CoV-2
8.
Sensors (Basel) ; 21(18)2021 Sep 19.
Article in English | MEDLINE | ID: mdl-34577493

ABSTRACT

The pandemic emergency of the coronavirus disease 2019 (COVID-19) shed light on the need for innovative aids, devices, and assistive technologies to enable people with severe disabilities to live their daily lives. EEG-based Brain-Computer Interfaces (BCIs) can lead individuals with significant health challenges to improve their independence, facilitate participation in activities, thus enhancing overall well-being and preventing impairments. This systematic review provides state-of-the-art applications of EEG-based BCIs, particularly those using motor-imagery (MI) data, to wheelchair control and movement. It presents a thorough examination of the different studies conducted since 2010, focusing on the algorithm analysis, features extraction, features selection, and classification techniques used as well as on wheelchair components and performance evaluation. The results provided in this paper could highlight the limitations of current biomedical instrumentations applied to people with severe disabilities and bring focus to innovative research topics.


Subject(s)
Brain-Computer Interfaces , COVID-19 , Wheelchairs , Electroencephalography , Humans , Movement , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...