Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 113(4): 1864-1871, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32322879

ABSTRACT

Trap cropping, in which a trap crop is planted near a cash crop, has been used successfully for reducing pest damage in some agricultural systems. We used a meta-analysis of extensive data on two trap cropping systems, diamondback moth, Plutella xylostella (Linnaeus), exploiting cabbage and Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) exploiting maize, to show that oviposition preference for, and high larval mortality on trap crops are important indicators of effectiveness of trap cropping systems. We then evaluated Indian mustard (Brassica juncea var. juncea L. Czern.) (Capparidales: Brassicaceae) and yellow rocket (Barbarea vulgaris W. T. Aiton) (Brassicales: Brassicaceae) as trap crops for protecting broccoli (Brassica oleracea var. italica Plenck) (Capparidales: Brassicaceae) against diamondback moth in Yuma, AZ, using planting configurations compatible with current practices for commercial production and without use of insecticides. In oviposition choice tests, both yellow rocket and Indian mustard were highly preferred over broccoli in the field. Furthermore, the number of larvae and pupae was significantly lower on yellow rocket and Indian mustard compared to broccoli, indicating relatively high mortality on these trap crops. Nevertheless, during the fall and spring growing seasons, no significant differences in the number of individuals on broccoli or proportion of broccoli crowns infested at harvest occurred between plots with trap crops relative to plots exclusively planted to broccoli. Thus, with the plant density and planting patterns used and without use of insecticides, there was no evidence that trap cropping was effective for reducing diamondback moth infestation of broccoli.


Subject(s)
Brassica , Moths , Animals , Crops, Agricultural , Larva , Oviposition
2.
J Econ Entomol ; 107(1): 1-10, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24665679

ABSTRACT

Theory indicates that landscape composition affects transmission of vector-borne crop diseases, but few empirical studies have investigated how landscape composition affects plant disease epidemiology. Since 2006, Bemisia tabaci (Gennadius) has vectored the cucurbit yellow stunting disorder virus (CYSDV) to cantaloupe and honeydew melons (Cucumis melo L.) in the southwestern United States and northern Mexico, causing significant reductions in yield of fall melons and increased use of insecticides. Here, we show that a landscape-based approach allowing simultaneous assessment of impacts of local (i.e., planting date) and regional (i.e., landscape composition) factors provides valuable insights on how to reduce crop disease risks. Specifically, we found that planting fall melon fields early in the growing season, eliminating plants germinating from seeds produced by spring melons after harvest, and planting fall melon fields away from cotton and spring melon fields may significantly reduce the incidence of CYSDV infection in fall melons. Because the largest scale of significance of the positive association between abundance of cotton and spring melon fields and CYSDV incidence was 1,750 and 3,000 m, respectively, reducing areas of cotton and spring melon fields within these distances from fall melon fields may decrease CYSDV incidence. Our results indicate that landscape-based studies will be fruitful to alleviate limitations imposed on crop production by vector-borne diseases.


Subject(s)
Crops, Agricultural/virology , Cucumis melo/virology , Hemiptera/virology , Insect Vectors/virology , Plant Diseases/virology , Animals , Arizona , Geography
3.
Bull Entomol Res ; 92(6): 449-60, 2002 Dec.
Article in English | MEDLINE | ID: mdl-17598296

ABSTRACT

Various insecticide use strategies including rotations, sequential use, and mixtures were evaluated experimentally on Bemisia tabaci (Gennadius) in California and Arizona (U.S.A.) cotton fields. Toxicological responses of adult B. tabaci were measured along with preimaginal densities and cotton yields from plots subjected to different insecticide regimens. Weekly monitoring for susceptibility changes over ten consecutive weeks in four different trials failed to detect significant differences between sequential use and rotation regimens, nor in comparison to the control plots. There were, however, significant differences among study-site locations and between study years as well as significant within-season time effects. Relative infestations in insecticide-treated plots expressed as a percentage of preimaginal densities in control plots indicated that better control was obtained by all insecticide treatments in conjunction with higher susceptibility levels observed in the second year. Lower preimaginal densities of B. tabaci were measured in the rotation treatment in comparison to sequential treatments of endosulfan, chlorpyrifos, or amitraz, but all were less effective than sequential treatments of bifenthrin or the mixture of bifenthrin + endosulfan. Cotton lint yields were inversely related to B. tabaci densities, with highest yields in the bifenthrin and mixture plots and lowest yields in the control plots. Suppression of B. tabaci infestations in insecticide-treated plots relative to untreated control plots also improved under conditions of lower B. tabaci pressure. The increases in cotton yield and susceptibility to insecticides seen in the current study support the trend observed in the southwestern USA of improved management of B. tabaci despite continuing intensive use of insecticides.


Subject(s)
Hemiptera/drug effects , Insect Control/methods , Insecticides/toxicity , Agriculture/methods , Animals , Arizona , California , Chlorpyrifos/toxicity , Endosulfan/toxicity , Gossypium/growth & development , Insecticide Resistance , Larva/drug effects , Population Density , Pyrethrins/toxicity , Seasons , Toluidines/toxicity
4.
J Econ Entomol ; 93(6): 1688-94, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11142299

ABSTRACT

A 3-yr project was initiated in 1993 to examine the effects of insecticides and sustained whitefly, Bemisia argentifolii Bellows & Perring [aka. B tabaci Gennadius (Strain B)], feeding on alfalfa plant growth and vigor in greenhouse cage studies, and to determine the impact of natural Bemisia whitefly populations on alfalfa forage yields and quality in a large-plot field experiment. Alfalfa plant growth and vigor after exposure to imidacloprid and a mixture of fenpropathrin and acephate insecticides did not differ from untreated plants in the greenhouse. Consequently, foliar and soil applied insecticides were used to manipulate whitefly densities on alfalfa plants to measure whitefly feeding effects on plant growth and forage yield. Heavy whitefly densities on untreated alfalfa plants in the greenhouse resulted in significant reductions in relative growth rates and net assimilation rates as compared with imidacloprid-treated plants that were maintained relatively whitefly-free. Reductions in alfalfa plant growth measured between infested and treated plants were proportional to whitefly densities. Field plot results derived from three crop seasons were relatively consistent with our greenhouse trials. Both experimental approaches clearly showed that alfalfa plants exposed to high densities of whitefly immatures and adults grew at a significantly slower rate and produced less foliage. As a result of reduced growth rates, alfalfa maturity in the naturally infested plots was estimated to be approximately 7-10 d behind managed plots. Delays in maturity resulted in significant reductions in forage yields of 13-18% during August-September harvests when whitefly populations reached peak abundance. Whitefly feeding stresses also effected hay quality through the reduction of crude protein content and contamination of foliage with honeydew and sooty mold. The status of the Bemisia whiteflies as an economic pest to alfalfa is clearly evident from these studies, but the damage potential of whiteflies in the southwestern United States appears to be restricted to one or two harvest periods during the summer coinciding with peak adult populations and their dispersal from alternate host crops.


Subject(s)
Hemiptera , Insect Control , Medicago sativa/growth & development , Animals , Crops, Agricultural , Insecticides , Pyrethrins , Quality Control , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...