Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Cells ; 13(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38334650

ABSTRACT

Glioblastoma (GBM) is characterized by an immunosuppressive tumor microenvironment (TME) strictly associated with therapy resistance. Cyclooxygenase-2 (COX-2) fuels GBM proliferation, stemness, and chemoresistance. We previously reported that COX-2 upregulation induced by temozolomide (TMZ) supported chemoresistance. Also, COX-2 transfer by extracellular vesicles released by T98G promoted M2 polarization in macrophages, whereas COX-2 inhibition counteracted these effects. Here, we investigated the COX-2 role in the stemness potential and modulation of the GBM immunosuppressive microenvironment. The presence of macrophages U937 within tumorspheres derived from GBM cell lines and primary cultures exposed to celecoxib (COX-2 inhibitor) with or without TMZ was studied by confocal microscopy. M2 polarization was analyzed by TGFß-1 and CD206 levels. Osteopontin (OPN), a crucial player within the TME by driving the macrophages' infiltration, and CD44 expression was assessed by Western blot. TMZ strongly enhanced tumorsphere size and induced the M2 polarization of infiltrating macrophages. In macrophage-infiltrated tumorspheres, TMZ upregulated OPN and CD44 expression. These TMZ effects were counteracted by the concurrent addition of CXB. Remarkably, exogenous prostaglandin-E2 restored OPN and CD44, highlighting the COX-2 pivotal role in the protumor macrophages' state promotion. COX-2 inhibition interfered with TMZ's ability to induce M2-polarization and counteracted the development of an immunosuppressive TME.


Subject(s)
Brain Neoplasms , Cyclooxygenase 2 , Glioblastoma , Humans , Brain Neoplasms/metabolism , Cell Line, Tumor , Cyclooxygenase 2/metabolism , Drug Resistance, Neoplasm , Glioblastoma/metabolism , Temozolomide/pharmacology , Tumor Microenvironment
2.
Biomedicines ; 11(9)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37760851

ABSTRACT

Skin aging is a dynamic process that determines structural alterations in ECM and reduction in dermal fibroblasts. The recent availability on the market of an innovative polycomponent formulation (KARISMA Rh Collagen® FACE, K) containing noncrosslinked high-molecular-weight hyaluronic acid (HMW-HA), a human recombinant polypeptide of collagen-1 alpha chain, and carboxymethyl cellulose (CMC), attracted our scientific interest in evaluating its biomolecular effects on human dermal adult and aged fibroblasts. After treatment with increasing K concentrations, cell proliferation, collagen I, prolyl 4-hydroxylase (P4HA1), an essential protein in collagen biosynthesis, and α-SMA levels were assessed. The fibroblast contractility, TGF-ß1 levels, and oxidative stress markers were also evaluated. K formulation exposure led to a significant and dose-dependent increase in the proliferation and migration of adult fibroblasts. Of note, the K exposure counteracted the H2O2-induced aging by promoting cell proliferation, reducing ß-galactosidase activity, and neutralizing the aging-associated oxidative damage. Moreover, an increase in collagen I, P4HA1, α-SMA, TGF-ß1 levels, and improved contractility of adult and aged fibroblasts were observed after treatment. Overall, our results show evidence that the K treatment is efficacious in improving biological functions in adult fibroblasts and suppressing the biomolecular events associated with H2O2-induced cellular aging, thus supporting the regenerative and bio-revitalizing action of the K formulation helpful in preventing or treating skin aging.

3.
Langmuir ; 39(23): 8255-8266, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37265082

ABSTRACT

In vitro cell-based characterization methods of nanoparticles are generally static and require the use of secondary analysis techniques and labeling agents. In this study, bare niosomes and chitosan-coated niosomes (chitosomes) and their interactions with intestinal cells are studied under dynamic conditions and without fluorescent probes, using surface plasmon resonance (SPR)-based cell sensing. Niosomes and chitosomes were synthesized by using Tween 20 and cholesterol in a 15 mM:15 mM ratio and then characterized by dynamic light scattering (DLS). DLS analysis demonstrated that bare niosomes had average sizes of ∼125 nm, polydispersity index (PDI) below 0.2, and a negative zeta (ζ)-potential of -35.6 mV. In turn, chitosomes had increased sizes up to ∼180 nm, with a PDI of 0.2-0.3 and a highly positive ζ-potential of +57.9 mV. The viability of HT29-MTX, Caco-2, and Caco-2/HT29-MTX cocultured cells showed that both niosomes and chitosomes are cytocompatible up to concentrations of 31.6 µg/mL for at least 240 min. SPR analysis demonstrated that chitosomes interact more efficiently with HT29-MTX, Caco-2, and Caco-2/HT29-MTX cocultures compared to bare niosomes. The resulting SPR measurements were further supported by confocal microscopy and flow cytometry studies, which demonstrated that this method is a useful complementary or even alternative tool to directly characterize the interactions between niosomes and in vitro cell models in label-free and real-time conditions.


Subject(s)
Chitosan , Liposomes , Humans , Caco-2 Cells , Intestines
4.
Int J Mol Sci ; 24(9)2023 May 02.
Article in English | MEDLINE | ID: mdl-37175841

ABSTRACT

Hypoxia-inducible factor-1α (HIF-1α), a central player in maintaining gut-microbiota homeostasis, plays a pivotal role in inducing adaptive mechanisms to hypoxia and is negatively regulated by prolyl hydroxylase 2 (PHD2). HIF-1α is stabilized through PI3K/AKT signaling regardless of oxygen levels. Considering the crucial role of the HIF pathway in intestinal mucosal physiology and its relationships with gut microbiota, this study aimed to evaluate the ability of the lysate from the multi-strain probiotic formulation SLAB51 to affect the HIF pathway in a model of in vitro human intestinal epithelium (intestinal epithelial cells, IECs) and to protect from lipopolysaccharide (LPS) challenge. The exposure of IECs to SLAB51 lysate under normoxic conditions led to a dose-dependent increase in HIF-1α protein levels, which was associated with higher glycolytic metabolism and L-lactate production. Probiotic lysate significantly reduced PHD2 levels and HIF-1α hydroxylation, thus leading to HIF-1α stabilization. The ability of SLAB51 lysate to increase HIF-1α levels was also associated with the activation of the PI3K/AKT pathway and with the inhibition of NF-κB, nitric oxide synthase 2 (NOS2), and IL-1ß increase elicited by LPS treatment. Our results suggest that the probiotic treatment, by stabilizing HIF-1α, can protect from an LPS-induced inflammatory response through a mechanism involving PI3K/AKT signaling.


Subject(s)
Lipopolysaccharides , Proto-Oncogene Proteins c-akt , Humans , Lipopolysaccharides/toxicity , Lipopolysaccharides/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Caco-2 Cells , Phosphatidylinositol 3-Kinases/metabolism , Hypoxia/metabolism , Epithelial Cells/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
5.
J Inflamm (Lond) ; 19(1): 27, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36536411

ABSTRACT

BACKGROUND: Abnormal and deregulated skin wound healing associated with prolonged inflammation may result in dermal fibrosis. Since the current therapeutic strategies revealed unsatisfactory, the investigation of alternative approaches such as those based on the use of specific probiotic strains could provide promising therapeutic options. In this study, we aimed to evaluate whether the lysate from S. thermophilus could antagonize the fibrogenic effects of TGF-ß1 in normal human dermal fibroblasts (NHDF). METHODS: NHDF were exposed to TGF-ß1 to establish a fibrotic phenotype. Proliferation rate and cell number were measured using the IncuCyte® Live Cell Imager system and the trypan blue dye exclusion test. Phenoconversion markers (α-SMA and fibronectin) and collagen I levels were assessed by western blot and immunofluorescence. The mRNA levels of TGF-ß1 were evaluated by RT-PCR. The Smad2/3 phosphorylation level as well as ß-catenin and PPARγ expression, were assessed by western blot. The cell contractility function and migration of NHDF were studied using collagen gel retraction assay, and scratch wound healing assay, respectively. The effects of S. thermophilus lysate, alone or combined with TGF-ß1, were evaluated on all of the above-listed parameters and markers associated with TGF-ß1-induced fibrotic phenotype. RESULTS: Exposure to the S. thermophilus lysate significantly reduced the key mediators and events involved in the abnormal activation of myofibroblasts by TGF-ß1 within the fibrotic profile. The S. thermophilus treatment significantly reduced cell proliferation, migration, and myo-differentiation. In addition, the treatment with probiotic lysate reduced the α-SMA, fibronectin, collagen-I expression levels, and affected the collagen contraction ability of activated dermal fibroblasts. Moreover, the probiotic targeted the TGF-ß1 signaling, reducing Smad2/3 activation, TGF-ß1 mRNA level, and ß-catenin expression through the upregulation of PPARγ. CONCLUSION: This is the first report showing that S. thermophilus lysate had a remarkable anti-fibrotic effect in TGF-ß1-activated NHDF by inhibiting Smad signaling. Notably, the probiotic was able to reduce ß-catenin and increase PPARγ levels. The findings support our point that S. thermophilus may help prevent or treat hypertrophic scarring and keloids.

6.
Front Oncol ; 12: 933746, 2022.
Article in English | MEDLINE | ID: mdl-35936755

ABSTRACT

Temozolomide (TMZ) resistance is frequent in patients with glioblastoma (GBM), a tumor characterized by a marked inflammatory microenvironment. Recently, we reported that cyclooxygenase-2 (COX-2) is upregulated in TMZ-resistant GBM cells treated with high TMZ concentrations. Moreover, COX-2 activity inhibition significantly counteracted TMZ-resistance of GBM cells. Extracellular vesicles (EV) are considered crucial mediators in orchestrating GBM drug resistance by modulating the tumor microenvironment (TME) and affecting the surrounding recipient cell phenotype and behavior. This work aimed to verify whether TMZ, at low and clinically relevant doses (5-20 µM), could induce COX-2 overexpression in GBM cells (T98G and U87MG) and explore if secreted EV shuttled COX-2 to recipient cells. The effect of COX-2 inhibitors (COXIB), Celecoxib (CXB), or NS398, alone or TMZ-combined, was also investigated. Our results indicated that TMZ at clinically relevant doses upregulated COX-2 in GBM cells. COXIB treatment significantly counteracted TMZ-induced COX-2 expression, confirming the crucial role of the COX-2/PGE2 system in TMZ-resistance. The COXIB specificity was verified on U251MG, COX-2 null GBM cells. Western blotting of GBM-EV cells showed the COX-2 presence, with the same intracellular trend, increasing in EV derived from TMZ-treated cells and decreasing in those derived from COXIB+TMZ-treated cells. We then evaluated the effect of EV secreted by TMZ-treated cells on U937 and U251MG, used as recipient cells. In human macrophage cell line U937, the internalization of EV derived by TMZ-T98G cells led to a shift versus a pro-tumor M2-like phenotype. On the other hand, EV from TMZ-T98G induced a significant decrease in TMZ sensitivity in U251MG cells. Overall, our results, in confirming the crucial role played by COX-2 in TMZ-resistance, provide the first evidence of the presence and effective functional transfer of this enzyme through EV derived from GBM cells, with multiple potential consequences at the level of TME.

7.
Int J Mol Sci ; 23(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35163465

ABSTRACT

TMZ-resistance remains a main limitation in glioblastoma (GBM) treatment. TMZ is an alkylating agent whose cytotoxicity is modulated by O6-methylguanine-DNA methyltransferase (MGMT), whose expression is determined by MGMT gene promoter methylation status. The inflammatory marker COX-2 has been implicated in GBM tumorigenesis, progression, and stemness. COX-2 inhibitors are considered a GBM add-on treatment due to their ability to increase TMZ-sensitivity. We investigated the effect of TMZ on COX-2 expression in GBM cell lines showing different COX-2 levels and TMZ sensitivity (T98G and U251MG). ß-catenin, MGMT, and SOX-2 expression was analyzed. The effects of NS398, COX-2 inhibitor, alone or TMZ-combined, were studied evaluating cell proliferation by the IncuCyte® system, cell cycle/apoptosis, and clonogenic potential. COX-2, ß-catenin, MGMT, and SOX-2 expression was evaluated by RT-PCR, Western blotting, and immunofluorescence and PGE2 by ELISA. Our findings, sustaining the role of COX-2/PGE2 system in TMZ-resistance of GBM, show, for the first time, a relevant, dose-dependent up-regulation of COX-2 expression and activity in TMZ-treated T98G that, in turn, correlated with chemoresistance. Similarly, all the COX-2-dependent signaling pathways involved in TMZ-resistance also resulted in being up-modulated after treatment with TMZ. NS398+TMZ was able to reduce cell proliferation and induce cell cycle arrest and apoptosis. Moreover, NS398+TMZ counteracted the resistance in T98G preventing the TMZ-induced COX-2, ß-catenin, MGMT, and SOX-2 up-regulation.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Brain Neoplasms/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Glioblastoma/metabolism , Nitrobenzenes/pharmacology , Sulfonamides/pharmacology , Temozolomide/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/drug therapy , Glioblastoma/genetics , Humans , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Up-Regulation/drug effects , beta Catenin/genetics , beta Catenin/metabolism
8.
Nutrients ; 13(3)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803197

ABSTRACT

Fibrosis is a severe complication of chronic inflammatory disorders, such as inflammatory bowel disease (IBD). Current strategies are not fully effective in treating fibrosis; therefore, innovative anti-fibrotic approaches are urgently needed. TGF-ß1 plays a central role in the fibrotic process by inducing myofibroblast differentiation and excessive extracellular matrix (ECM) protein deposition. Here, we explored the potential anti-fibrotic impact of two high concentration multi-strain probiotic formulations on TGF-ß1-activated human intestinal colonic myofibroblast CCD-18Co. Human colonic fibroblast CCD-18Co cells were cultured in the presence of TGF-ß1 to develop a fibrotic phenotype. Cell viability and growth were measured using the Trypan Blue dye exclusion test. The collagen-I, α-SMA, and pSmad2/3 expression levels were evaluated by Western blot analysis. Fibrosis markers were also analyzed by immunofluorescence and microscopy. The levels of TGF-ß1 in the culture medium were assessed by ELISA. The effects of commercially available probiotic products VSL#3® and Vivomixx® were evaluated as the soluble fraction of bacterial lysates. The results suggested that the soluble fraction of Vivomixx® formulation, but not VSL#3®, was able to antagonize the pro-fibrotic effects of TGF-ß1 on CCD-18Co cells, being able to prevent all of the cellular and molecular parameters that are related to the fibrotic phenotype. The mechanism underlying the observed effect appeared to be associated with inhibition of the TGF-ß1/Smad signaling pathway. To our knowledge, this study provides the first experimental evidence that Vivomixx® could be considered to be a promising candidate against intestinal fibrosis, being able to antagonize TGF-ß1 pro-fibrotic effects. The differences that were observed in our fibrosis model between the two probiotics used could be attributable to the different number of strains in different proportions.


Subject(s)
Cell Extracts/pharmacology , Inflammatory Bowel Diseases/microbiology , Intestinal Diseases/prevention & control , Intestines/pathology , Probiotics/chemistry , Cell Differentiation/drug effects , Cell Growth Processes/drug effects , Cell Survival/drug effects , Cells, Cultured , Extracellular Matrix Proteins/metabolism , Fibrosis , Humans , Inflammatory Bowel Diseases/complications , Intestinal Diseases/microbiology , Intestinal Diseases/pathology , Intestines/microbiology , Myofibroblasts/drug effects , Phenotype , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism
9.
Cancer Cell Int ; 20: 167, 2020.
Article in English | MEDLINE | ID: mdl-32435158

ABSTRACT

BACKGROUND: Cyclooxygenase-2 (COX-2), an inflammation-associated enzyme, has been implicated in tumorigenesis and progression of glioblastoma (GBM). The poor survival of GBM was mainly associated with the presence of glioma stem cells (GSC) and the markedly inflammatory microenvironment. To further explore the involvement of COX-2 in glioma biology, the effects of NS398, a selective COX-2 inhibitor, were evaluated on GSC derived from COX-2 expressing GBM cell lines, i.e., U87MG and T98G, in terms of neurospheres' growth, autophagy, and extracellular vesicle (EV) release. METHODS: Neurospheres' growth and morphology were evaluated by optical and scanning electron microscopy. Autophagy was measured by staining acidic vesicular organelles. Extracellular vesicles (EV), released from neurospheres, were analyzed by transmission electron microscopy. The autophagic proteins Beclin-1 and LC3B, as well as the EV markers CD63 and CD81, were analyzed by western blotting. The scratch assay test was used to evaluate the NS398 influence on GBM cell migration. RESULTS: Both cell lines were strongly influenced by NS398 exposure, as showed by morphological changes, reduced growth rate, and appearance of autophagy. Furthermore, the inhibitor led to a functional change of EV released by neurospheres. Indeed, EV secreted by NS398-treated GSC, but not those from control cells, were able to significantly inhibit adherent U87MG and T98G cell migration and induced autophagy in recipient cells, thus leading to effects quite similar to those directly caused by NS398 in the same cells. CONCLUSION: Despite the intrinsic diversity and individual genetic features of U87MG and T98G, comparable effects were exerted by the COX-2 inhibitor NS398 on both GBM cell lines. Overall, our findings support the crucial role of the inflammatory-associated COX-2/PGE2 system in glioma and glioma stem cell biology.

10.
Aging (Albany NY) ; 12(5): 4641-4659, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32155131

ABSTRACT

Parkinson is a common neurodegenerative disorder, characterized by motor and non-motor symptoms, including abnormalities in the gut function, which may appear before the motor sign. To date, there are treatments that can help relieve Parkinson' disease (PD)-associated symptoms, but there is no cure to control the onset and progression of this disorder. Altered components of the gut could represent a key role in gut-brain axis, which is a bidirectional system between the central nervous system and the enteric nervous system. Diet can alter the microbiota composition, affecting gut-brain axis function. Gut microbiome restoration through selected probiotics' administration has been reported. In this study, we investigated the effects of the novel formulation SLAB51 in PD. Our findings indicate that this probiotic formulation can counteract the detrimental effect of 6-OHDA in vitro and in vivo models of PD. The results suggest that SLAB51 can be a promising candidate for the prevention or as coadjuvant treatment of PD.


Subject(s)
Gastrointestinal Microbiome/drug effects , Motor Skills/drug effects , Parkinson Disease, Secondary/drug therapy , Probiotics/therapeutic use , Animals , Behavior, Animal/drug effects , Cell Line, Tumor , Disease Models, Animal , Humans , Male , Mice , Probiotics/administration & dosage
11.
J Cancer Res Clin Oncol ; 146(5): 1273-1290, 2020 May.
Article in English | MEDLINE | ID: mdl-32088781

ABSTRACT

BACKGROUND: Hepatic artery infusion (HAI) and drug selection by liquid biopsy precision oncotherapy are under investigation for the multidisciplinary treatment of unresectable colorectal liver metastases (CRCLM) in progression after systemic therapy. Here, we compare the safety and efficacy of third-line HAI followed by target therapy with drug regimes selected by liquid biopsy precision oncotherapy to third-line systemic therapy with drug regimes selected partly by tissue biopsy precision oncotherapy, in a retrospective real-life study of 106 unresectable CRCLM patients. METHODS: Drug regimens for HAI/target therapy were selected by assessing the sensitivity of purified circulating tumor cell (CTCs) to 5-fluorouracil, carboplatin, cisplatin, oxaliplatin, irinotecan, doxorubicin, mitomycin, raltitrexed, and melphalan in-vitro and by real-time qRT-PCR gene expression assays, and for the Systemic therapy cohort were selected by age, comorbidity, performance status, and absence of RAS mutations. Therapeutic responses, adverse events, and quality of life were evaluated by RECIST 1.1, CTCAE 4.03, and ECOG criteria, respectively, and chemo-filtration performed following HAI to reduce systemic toxic effects. RESULTS: HAI/target therapy with drugs selected by liquid biopsy precision oncotherapy (44 patients), resulted in 2.27% CRs, 38.63% PRs, 56.81% SD,s and 2.27% PDs; ECOG 2 to 1 improvement, but no infusion-related technical or vascular complications, or deaths. Systemic therapy (62 patients) resulted in 1.6% CRs, 17.74% PRs, 37.09% SDs, and 45.16% PDs; more grade 1-2 adverse events and 4.84% ECOG 1 to 2 worsening. The median 5 month PFS in the HAI/target therapy cohort was significantly longer than 3 months in the systemic cohort (P < 0.007) and the median 14 month survival in the HAI/target therapy cohort was longer than 8.5 months in the systemic therapy cohort but not statistically significant. Multivariate analysis identified ECOG grade 2 as the most unfavourable survival prognostic factor in both cohorts. CONCLUSIONS: HAI plus chemo-filtration followed by target therapy, with drug regimens selected by liquid biopsy precision oncotherapy, is a safe and efficacious alternative therapeutic strategy for unresectable CRCLM in progression after two lines of systemic therapy and should be considered for a multicentre prospective phase III study, to fully confirm this potential.


Subject(s)
Antineoplastic Agents/administration & dosage , Colorectal Neoplasms/drug therapy , Liver Neoplasms/drug therapy , Liver Neoplasms/secondary , Aged , Antineoplastic Agents/adverse effects , Cohort Studies , Colorectal Neoplasms/pathology , Female , Hepatic Artery , Humans , Infusions, Intra-Arterial , Liquid Biopsy , Male , Middle Aged , Neoplastic Cells, Circulating/drug effects , Precision Medicine , Progression-Free Survival , Quality of Life
12.
Biomed Res Int ; 2020: 6093974, 2020.
Article in English | MEDLINE | ID: mdl-34368344

ABSTRACT

The ability of a collagen-based matrix to support cell proliferation, migration, and infiltration has been reported; however, the direct effect of an aqueous collagen suspension on cell cultures has not been studied yet. In this work, the effects of a high-concentration aqueous suspension of a micronized type I equine collagen (EC-I) have been evaluated on a normal mouse fibroblast cell line. Immunofluorescence analysis showed the ability of EC-I to induce a significant increase of type I and III collagen levels, parallel with overexpression of crucial proteins in collagen biosynthesis, maturation, and secretion, prolyl 4-hydroxylase (P4H) and heat shock protein 47 (HSP47), as demonstrated by western blot experiments. The treatment led, also, to an increase of α-smooth muscle actin (α-SMA) expression, evaluated through western blot analysis, and cytoskeletal reorganization, as assessed by phalloidin staining. Moreover, scanning electron microscopy analysis highlighted the appearance of plasma membrane extensions and blebbing of extracellular vesicles. Altogether, these results strongly suggest that an aqueous collagen type I suspension is able to induce fibroblast myodifferentiation. Moreover, our findings also support in vitro models as a useful tool to evaluate the effects of a collagen suspension and understand the molecular signaling pathways possibly involved in the effects observed following collagen treatment in vivo.


Subject(s)
Cell Differentiation , Collagen Type I/chemistry , Fibroblasts/metabolism , Models, Biological , Actins/biosynthesis , Animals , Antigens, Differentiation/biosynthesis , HSP47 Heat-Shock Proteins/biosynthesis , Horses , Mice , NIH 3T3 Cells , Prolyl Hydroxylases/biosynthesis
13.
Heliyon ; 5(11): e02818, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31844735

ABSTRACT

OBJECTIVE: Examination of the current trends and future perspectives of the cell-based therapies in neurosurgery. METHODS: A PubMed/MEDLINE-based systematic review has been performed combining the main Medical Subject Headings (MeSH) regarding the cell- and tissue-based therapies with the "Brain", "Spinal Cord", "Spine" and "Skull" MeSH terms. Only articles in English published in the last 10 years and pertinent to neurosurgery have been selected. RESULTS: A total of 1,173 relevant articles have been chosen. Somatic cells and gene-modification technologies have undergone the greatest development. Immunotherapies and gene therapies have been tested for the cure of glioblastoma, stem cells mainly for brain and spinal cord traumatic injuries. Stem cells have also found a rationale in the treatment of the cranial and spinal bony defects, and of the intervertebral disc degeneration, as well.Most of the completed or ongoing trials concerning the cell-based therapies in neurosurgery are on phase 2. Future perspectives involve the need to overcome issues related to immunogenicity, oncogenicity and routes for administration. Refinement and improvement of vector design and delivery are required within the gene therapies. CONCLUSION: The last decade has been characterised by a progressive evolution of neurosurgery from a purely mechanical phase to a new biological one. This trend has followed the rapid and parallel development of translational medicine and nanotechnologies.The introduction of new technologies, the optimisation of the already existing ones, and the reduction of costs are among the main challenges of the foreseeable future.

14.
Biomolecules ; 9(12)2019 11 21.
Article in English | MEDLINE | ID: mdl-31766379

ABSTRACT

A growing body of evidence supports the use of probiotics in the treatment of several skin conditions, including wounds. Even if in vitro and in vivo studies have highlighted the pro-healing effects of some probiotic bacteria, the underlying mechanisms are still not fully defined. The current investigation aimed to determine the re-epithelialization potential of the soluble fraction from lysate of seven different probiotic strains belonging to different genera (i.e., Streptococcus, Lactobacillus, and Bifidobacterium) on in vitro physically wounded HaCaT monolayer model. The results suggested that the soluble fraction of S. thermophilus,L. plantarum, and L. acidophilus promoted the re-epithelialization of scratched HaCaT monolayers, whereas those from B. longum,B. infantis, and B. breve significantly inhibited the process. On the other hand, L. bulgaricus showed no significant effect on in vitro wound repair. The mechanisms underlying the pro- or anti-healing properties of selected bacterial strains strictly and positively correlated with their ability to modulate nitric oxide synthase 2 (NOS2) expression and activity. Accordingly, the pre-treatment with aminoguanidine (AG), a specific inhibitor of NOS2 activity, abrogated the pro-healing effects of S. thermophilus, L. plantarum, and L. acidophilus.


Subject(s)
Keratinocytes/enzymology , Nitric Oxide Synthase Type II/metabolism , Probiotics/pharmacology , Re-Epithelialization/drug effects , Bacteria/metabolism , Enzyme Inhibitors/pharmacology , Guanidines/pharmacology , Humans , Keratinocytes/drug effects , Nitrites/metabolism , Solubility
15.
Int J Mol Sci ; 20(15)2019 Jul 30.
Article in English | MEDLINE | ID: mdl-31366040

ABSTRACT

Wound healing is a complex process with a linear development that involves many actors in a multistep timeline commonly divided into four stages: Hemostasis, inflammation, proliferation, and remodeling. Chronic non-healing wounds fail to progress beyond the inflammatory phase, thus precluding the next steps and, ultimately, wound repair. Many intrinsic or extrinsic factors may contribute to such an occurrence, including patient health conditions, age-related diseases, metabolic deficiencies, advanced age, mechanical pressure, and infections. Great interest is being focused on the adipose tissue-derived stem cell's (ASC) paracrine activity for its potential therapeutic impact on chronic non-healing wounds. In this review, we summarize the results of in vitro and in vivo experimental studies on the pro-wound healing effects of ASC-secretome and/or extracellular vesicles (EVs). To define an overall picture of the available literature data, experimental conditions and applied methodologies are described as well as the in vitro and in vivo models chosen in the reported studies. Even if a comparative analysis of the results obtained by the different groups is challenging due to the large variability of experimental conditions, the available findings are undoubtedly encouraging and fully support the use of cell-free therapies for the treatment of chronic non-healing wounds.


Subject(s)
Adipose Tissue/cytology , Extracellular Vesicles/transplantation , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Wound Healing , Adipose Tissue/metabolism , Animals , Extracellular Vesicles/metabolism , Humans
16.
Reprod Biol ; 19(3): 225-229, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31416694

ABSTRACT

Endometriosis can impair fertility by reducing ovarian reserve and the production of good-quality oocytes. The surgical removal of endometriotic lesions is generally recommended for women who wish to conceive. In this paper we studied whether ovarian cortex adjacent to excised small (diameter ≤ 4 cm) endometriotic cyst (here referred as Cortex Surrounding Endometriotic Cyst, CSEC) showed signs of tissue damages by evaluating the expression of proteins involved in DNA repair and apoptosis. To this end, phosphorylated H2A.X, Chk1 and 2, ATM and ATR, Bcl-2, Bid, phosphorylated and total p53, caspases (9, 8 and 3), XIAP, phosphorylated and total NFκB were analyzed by western blot. Results showed that caspase 8, XIAP, p53/p-p53 and NFκB were more abundantly expressed in all samples of CSEC group in comparison with ovarian cortex of controls. Conversely, the levels of the other proteins were comparable between the two groups. In conclusion, these results suggest that NFκB, caspase 8 and p53/p-p53 elevated expressions in samples of CSEC can be considered as an early sign of tissue injury, indicating that ovarian cortex is already sensitized to apoptosis and inflammation. Therefore, excision of EC should occur very early, to avoid further ovarian damages.


Subject(s)
Apoptosis/physiology , Cysts/pathology , DNA Repair/physiology , Endometriosis/metabolism , Ovary/metabolism , Biomarkers , Cysts/metabolism , Endometriosis/pathology , Female , Gene Expression Regulation , Humans
17.
J Chromatogr A ; 1605: 360351, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31307791

ABSTRACT

In the present work we analyzed the hydrophobicity and hydrophilicity properties of several non-steroidal anti-inflammatory drugs (NSAIDs) by investigating the structural changes of the dynamic hydrogen bond network in order to predict the extraction recovery of NSAIDs from biological fluids set by solid phase extraction (SPE). This work allows investigating the relationship between theoretical descriptors and experimental data using a parameter free method with a strong correlation (Pearson correlation 0.95, p-value 0.0003). The identification and quantification of analytes in human plasma were carried out by high performance liquid chromatography coupled with photodiode array detection (HPLC-PDA) using a Kinetex Evo C18 (150 x 4.6 mm I.D) protected by a guard column and a mixture of acetonitrile and 10 mM phosphate buffer (pH 2.5) (50:50, v/v) as mobile phase at isocratic conditions. Accuracy (BIAS%) ranged within -2.33% and + 8.05% while precision (RSD%) was less than 5.73%.The mean extraction recovery of the carprofen (IS) was 84.1% and the recovery of NSAIDs from human plasma ranged between 81.9% to 86.6%. LODs and LOQs for all the investigated NSAIDs were 0.003 and 0.01 µg/mL, respectively. The method was validated according to the ICH guide line in the range 0.010-20.0 µg/mL.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Blood Chemical Analysis/methods , Chromatography, Reverse-Phase , Solid Phase Extraction , Anti-Inflammatory Agents, Non-Steroidal/blood , Chromatography, High Pressure Liquid , Humans , Limit of Detection , Plasma/chemistry , Reproducibility of Results
18.
Int J Mol Sci ; 20(12)2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31226744

ABSTRACT

The relevance of nitric oxide synthase 2 (NOS2) as a prognostic factor in Glioblastoma Multiforme (GBM) malignancy is emerging. We analyzed the effect of NOS2 inhibitor 1400W on the autophagic flux and extracellular vesicle (EV) secretion in U87MG glioma cells. The effects of glioma stem cells (GSC)-derived EVs on adherent U87MG were evaluated. Cell proliferation and migration were examined while using Cell Counting Kit-8 assay (CCK-8) and scratch wound healing assay. Cell cycle profile and apoptosis were analyzed by flow cytometry. Autophagy-associated acidic vesicular organelles were detected and quantified by acridine orange staining. The number and size of EVs were assessed by nanoparticle tracking analysis. EV ultrastructure was verified by transmission electron microscopy (TEM). WB was used to analyze protein expression and acid sphingomyelinase was determined through ceramide levels. 1400W induced autophagy and EV secretion in both adherent U87MG and GSCs. EVs secreted by 1400W-treated GSC, but not those from untreated cells, were able to inhibit adherent U87MG cell growth and migration while also inducing a relevant level of autophagy. The hypothesis of NOS2 expression as GBM profile marker or interesting therapeutic target is supported by our findings. Autophagy and EV release following treatment with the NOS2 inhibitor could represent useful elements to better understand the complex biomolecular frame of GBM.


Subject(s)
Amidines/pharmacology , Autophagy/drug effects , Benzylamines/pharmacology , Brain Neoplasms/drug therapy , Enzyme Inhibitors/pharmacology , Glioblastoma/drug therapy , Nitric Oxide Synthase Type II/antagonists & inhibitors , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Extracellular Vesicles/drug effects , Extracellular Vesicles/metabolism , Glioblastoma/metabolism , Humans , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism
19.
Minerva Chir ; 74(4): 304-312, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31062943

ABSTRACT

BACKGROUND: Patients with unresectable recurrent rectal cancer that progresses after systemic chemotherapy and radiotherapy may be candidates for palliation with hypoxic pelvic perfusion (HPP). The aim of this observational retrospective study was to evaluate if a multimodality treatment including HPP and targeted-therapy may be useful to prolong clinical responses and survival of these patients. METHODS: Thirty-seven patients with unresectable recurrent rectal cancer in progression after standard treatments underwent repeated HPP with mitomycin C (25 mg/m2) and cisplatin (70 mg/m2). Twenty patients, exhibiting epidermal growth factor receptor (EGFR) overexpression, also received cetuximab targeted-therapy, following the ultimate HPP treatment. RESULTS: Following initial HPP treatment, median progression-free survival was 7 months (range: 5-19 months), median time-to-death or termination of follow-up was 13 months (range: 9-18 months), one-year survival-rate was 59.45%, two-year survival rate was 10.81%, and three-year survival rate was 2.7%. Survival was significantly influenced by cetuximab targeted-therapy post-HPP and the presence of additional metastatic sites (P<0.03). CONCLUSIONS: Repeated HPP treatments with mitomycin C plus cisplatin, followed by cetuximab targeted-therapy, may represent a safe and efficacious palliative therapy in patients with unresectable recurrent rectal cancer, in progression following standard systemic chemo- and radio-therapy, and thus warrants confirmation in a larger phase III study.


Subject(s)
Antineoplastic Agents/administration & dosage , Chemotherapy, Cancer, Regional Perfusion , Cisplatin/administration & dosage , Mitomycin/administration & dosage , Neoplasm Recurrence, Local/drug therapy , Palliative Care/methods , Rectal Neoplasms/drug therapy , Aged , Chemotherapy, Cancer, Regional Perfusion/methods , Female , Humans , Male , Middle Aged , Oxygen , Patient Care Team , Retrospective Studies
20.
Biomed Chromatogr ; 33(3): e4450, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30513138

ABSTRACT

A simple and rapid ultra-high-performance liquid chromatographic (UHPLC) for the simultaneous determination of meropenem and ciprofloxacin in human plasma was developed and validated. All of the analytes were separated in <5 min. A solid-phase extraction method was applied from sample preparation. Analytical separation was performed on a Poroshell SB C18 column (50 × 2.1 mm, 2.7 µm particle size) with photodiode array (PDA) detection. Meropenem and ciprofloxacin were determined at wavelengths of 300 and 277 nm, respectively. The mobile phase was a mixture of acetonitrile-10 mm ammonium acetate-methanol in gradient elution. The method has been validated for both drugs in gastric surgery for cancer patients. The method showed good linearity with correlation coefficients, r2  = 0.994 for the two drugs, as well as high precision (RSD < 10.5% in each case); accuracy ranged from -5.8 to +6.0%. The limit of quantitation of the two drugs was established at 0.02 and 0.01 µg/mL, respectively. Meropenem, ciprofloxacin and the internal standard were extracted from human plasma with a mean recovery ranging from 92.5 to 98.6%. The method was applied to quantify the drugs dosage in complicated gastric surgery patients.


Subject(s)
Anti-Bacterial Agents/blood , Chromatography, High Pressure Liquid/methods , Ciprofloxacin/blood , Meropenem/blood , Solid Phase Extraction/methods , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/therapeutic use , Antibiotic Prophylaxis , Ciprofloxacin/pharmacokinetics , Ciprofloxacin/therapeutic use , Cross Infection/drug therapy , Cross Infection/prevention & control , Humans , Limit of Detection , Linear Models , Meropenem/pharmacokinetics , Meropenem/therapeutic use , Reproducibility of Results , Stomach Neoplasms/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...