Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36772145

ABSTRACT

Nature-inspired artificial intelligence algorithms have been applied to color image quantization (CIQ) for some time. Among these algorithms, the particle swarm optimization algorithm (PSO-CIQ) and its numerous modifications are important in CIQ. In this article, the usefulness of such a modification, labeled IDE-PSO-CIQ and additionally using the idea of individual difference evolution based on the emotional states of particles, is tested. The superiority of this algorithm over the PSO-CIQ algorithm was demonstrated using a set of quality indices based on pixels, patches, and superpixels. Furthermore, both algorithms studied were applied to superpixel versions of quantized images, creating color palettes in much less time. A heuristic method was proposed to select the number of superpixels, depending on the size of the palette. The effectiveness of the proposed algorithms was experimentally verified on a set of benchmark color images. The results obtained from the computational experiments indicate a multiple reduction in computation time for the superpixel methods while maintaining the high quality of the output quantized images, slightly inferior to that obtained with the pixel methods.

2.
Sensors (Basel) ; 23(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36772200

ABSTRACT

Image vignetting is one of the major radiometric errors that occur in lens-camera systems. In many applications, vignetting is an undesirable effect; therefore, when it is impossible to fully prevent its occurrence, it is necessary to use computational methods for its correction. In probably the most frequently used approach to the vignetting correction, that is, the flat-field correction, the use of appropriate vignetting models plays a pivotal role. The radial polynomial (RP) model is commonly used, but for its proper use, the actual vignetting of the analyzed lens-camera system has to be a radial function. However, this condition is not fulfilled by many systems. There exist more universal models of vignetting; however, these models are much more sophisticated than the RP model. In this article, we propose a new model of vignetting named the Deformable Radial Polynomial (DRP) model, which joins the simplicity of the RP model with the universality of more sophisticated models. The DRP model uses a simple distance transformation and minimization method to match the radial vignetting model to the non-radial vignetting of the analyzed lens-camera system. The real-data experiment confirms that the DRP model, in general, gives better (up 35% or 50%, depending on the measure used) results than the RP model.

3.
Sensors (Basel) ; 22(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36015804

ABSTRACT

We propose three methods for the color quantization of superpixel images. Prior to the application of each method, the target image is first segmented into a finite number of superpixels by grouping the pixels that are similar in color. The color of a superpixel is given by the arithmetic mean of the colors of all constituent pixels. Following this, the superpixels are quantized using common splitting or clustering methods, such as median cut, k-means, and fuzzy c-means. In this manner, a color palette is generated while the original pixel image undergoes color mapping. The effectiveness of each proposed superpixel method is validated via experimentation using different color images. We compare the proposed methods with state-of-the-art color quantization methods. The results show significantly decreased computation time along with high quality of the quantized images. However, a multi-index evaluation process shows that the image quality is slightly worse than that obtained via pixel methods.


Subject(s)
Algorithms , Cluster Analysis , Color
4.
Sensors (Basel) ; 21(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34770392

ABSTRACT

Image vignetting is one of the major radiometric errors, which occurs in lens-camera systems. In many applications, vignetting is an undesirable phenomenon; therefore, when it is impossible to fully prevent its occurrence, it is necessary to use computational methods for its correction in the acquired image. In the most frequently used approach to the vignetting correction, i.e., the flat-field correction, the usage of appropriate vignetting models plays a crucial role. In the article, the new model of vignetting, i.e., Smooth Non-Iterative Local Polynomial (SNILP) model, is proposed. The SNILP model was compared with the models known from the literature, e.g., the polynomial 2D and radial polynomial models, in a series of numerical tests and in the real-data experiment. The obtained results prove that the SNILP model usually gives better vignetting correction results than the other aforementioned tested models. For images larger than UXGA format (1600×1200), the proposed model is also faster than other tested models. Moreover, among the tested models, the SNILP model requires the least hardware resources for its application. This means that the SNILP model is suitable for its usage in devices with limited computing power.


Subject(s)
Algorithms , Models, Statistical , Radiometry
5.
Front Neuroinform ; 14: 6, 2020.
Article in English | MEDLINE | ID: mdl-32116630

ABSTRACT

The main hypothesis of this work is that the time of delay in reaction to an unexpected event can be predicted on the basis of the brain activity recorded prior to that event. Such mental activity can be represented by electroencephalographic data. To test this hypothesis, we conducted a novel experiment involving 19 participants that took part in a 2-h long session of simulated aircraft flights. An EEG signal processing pipeline is proposed that consists of signal preprocessing, extracting bandpass features, and using regression to predict the reaction times. The prediction algorithms that are used in this study are the Least Absolute Shrinkage Operator and its Least Angle Regression modification, as well as Kernel Ridge and Radial Basis Support Vector Machine regression. The average Mean Absolute Error obtained across the 19 subjects was 114 ms. The present study demonstrates, for the first time, that it is possible to predict reaction times on the basis of EEG data. The presented solution can serve as a foundation for a system that can, in the future, increase the safety of air traffic.

SELECTION OF CITATIONS
SEARCH DETAIL
...