Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Monit Assess ; 194(4): 288, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35312876

ABSTRACT

The purpose of this study was to examine the spatial and temporal variations of phytoplankton species composition and biomass in Lake Bunyonyi, South-Western Uganda. Samples were collected monthly from nine fixed stations in the lake from October 2019 to September 2020. Based on the morphological characterization, 52 different species of phytoplankton were recorded. These were dominated by cyanobacteria (21 species) and chlorophytes (15 species) followed by diatoms (10 species), euglenophytes (4 species), dinoflagellates (2 species), and cryptophytes (1 species). The biomass (Chl-a concentration) ranged from 0.019 ± 0.009 mg/L at Heissesero station to 0.045 ± 0.013 mg/L obtained at Nyombe station. On a temporal basis, the highest mean Chl-a concentration of 0.044 ± 0.03 mg/L was recorded in March 2020 while the least concentration of 0.015 ± 0.011 mg/L was obtained in September 2020. Significant differences existed in the Chl-a concentration values between stations and across sampling months. Chl-a concentration was significantly positively correlated with dissolved oxygen (DO), turbidity but negatively correlated with temperature. The Shannon-Wiener index and evenness put it clear that the distribution of phytoplankton species in the lake is inequitable. Besides, 94.2% of the phytoplankton species revealed had never been reported by the previous studies in the study area. The dominance of species cyanobacteria (such as Microcystis spp., Cylindrospermopsis raciborskii, Anabaenopsis sp., and Anabaena sp.) presents potential future challenges to water quality management. Therefore, the establishment of a strong and committed committee dubbed "Lake Bunyonyi Water Management Committee" to oversee the activities and avert potential water quality challenges is strongly recommended. The existence of some toxic phytoplankton species calls for regular monitoring and careful use of the lake and its food products.


Subject(s)
Lakes , Phytoplankton , Biomass , Environmental Monitoring , Uganda
2.
SN Appl Sci ; 3(7): 697, 2021.
Article in English | MEDLINE | ID: mdl-34131630

ABSTRACT

Background Microbial water quality serves to indicate health risks associated with the consumption of contaminated water. Nevertheless, little is known about the microbiological characteristics of water in Lake Bunyonyi. This study was therefore undertaken to examine the spatial and temporal variations of faecal indicator bacteria (FIB) in relation to physicochemical parameters in Lake Bunyonyi. Result The FIB concentration was consistently measured during sampling months and correlated with each other showing the presumed human faecal pollution in the lake. The highest concentration values for E. coli (64.7 ± 47.3 CFU/100 mL) and enterococci (24.6 ± 32.4 CFU/100 mL were obtained in the station close to the Mugyera trading centre. On a temporal basis, the maximum values were recorded during the rainy season in October 2019 (70.7 ± 56.5 CFU/100 mL for E. coli and 38.44 ± 31.8 CFU/100 mL for enterococci. FIB did not differ significantly among the study stations (p > 0.05) but showed significant temporal variations among the months (p < 0.05) with concentrations being significantly high in wet season than dry season (U = 794, p < 0.0001 for E. coli; U = 993.5, p = 0.008 for enterococci). Spearman's rank correlation revealed that FIB concentrations were significantly positively correlated with turbidity and DO concentration levels (p < 0.05). Approximately 97.2% of the water samples had E. coli and enterococci concentrations levels below USEPA threshold for recreational waters. Likewise, 98.1 and 90.7% of samples recorded E. coli and enterococci counts exceeding the UNBS, APHA, WHO and EU threshold values for drinking water. Conclusion The FIB counts show that the Lake Bunyonyi water is bacteriologically unsuitable for drinking unless it is treated since the FIB pose health risks to consumers. Besides, the water can be used for recreational purposes.

3.
J Hazard Mater ; 405: 124591, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33301968

ABSTRACT

Plastic pollution is a growing problem, not at least in areas where poor waste management results in direct pollution of coastal zones, such as South Asia and regions in Africa. In addition to the effect on ecosystems and their related services, plastic pollution may also affect human health indirectly as vectors for infectious disease. As plastic offers a suitable surface for the attachment of biofilm forming bacteria, it may contribute to disease outbreaks and antimicrobial resistance. To investigate the role of plastic litter as potential vectors for pathogenic bacteria, we collected plastic litter from four rural sites in Zanzibar, and isolated adhered bacteria. Isolates were short-read sequenced for further molecular analysis. This revealed that collected plastic litter was associated with diverse bacterial species, including human pathogens Citrobacter freundii, Klebsiella pneumoniae and Vibrio cholerae. Furthermore, most isolates were found to be multidrug resistant. Our findings confirm that plastic litter, serve as novel reservoir for human multidrug resistant pathogenic bacteria that combined with poor sanitation and waste handling, may lead to transmission of infectious diseases and antimicrobial resistance. These findings add a new level to the environmental challenges with plastic pollution; the potential health risk associated with exposure to plastic litter.


Subject(s)
Ecosystem , Plastics , Drug Resistance, Multiple, Bacterial/genetics , Humans , Klebsiella pneumoniae/genetics , Plastics/toxicity , Tanzania
SELECTION OF CITATIONS
SEARCH DETAIL
...