Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
R Soc Open Sci ; 11(2): 231462, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38420629

ABSTRACT

For the 40 years after the end of commercial whaling in 1976, humpback whale populations in the North Pacific Ocean exhibited a prolonged period of recovery. Using mark-recapture methods on the largest individual photo-identification dataset ever assembled for a cetacean, we estimated annual ocean-basin-wide abundance for the species from 2002 through 2021. Trends in annual estimates describe strong post-whaling era population recovery from 16 875 (± 5955) in 2002 to a peak abundance estimate of 33 488 (± 4455) in 2012. An apparent 20% decline from 2012 to 2021, 33 488 (± 4455) to 26 662 (± 4192), suggests the population abruptly reached carrying capacity due to loss of prey resources. This was particularly evident for humpback whales wintering in Hawai'i, where, by 2021, estimated abundance had declined by 34% from a peak in 2013, down to abundance levels previously seen in 2006, and contrasted to an absence of decline in Mainland Mexico breeding humpbacks. The strongest marine heatwave recorded globally to date during the 2014-2016 period appeared to have altered the course of species recovery, with enduring effects. Extending this time series will allow humpback whales to serve as an indicator species for the ecosystem in the face of a changing climate.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21262701

ABSTRACT

The global effort to vaccinate people against SARS-CoV-2 in the midst of an ongoing pandemic has raised questions about the nature of vaccine breakthrough infections and the potential for vaccinated individuals to transmit the virus. These questions have become even more urgent as new variants of concern with enhanced transmissibility, such as Delta, continue to emerge. To shed light on how vaccine breakthrough infections compare with infections in immunologically naive individuals, we examined viral dynamics and infectious virus shedding through daily longitudinal sampling in a small cohort of adults infected with SARS-CoV-2 at varying stages of vaccination. The durations of both infectious virus shedding and symptoms were significantly reduced in vaccinated individuals compared with unvaccinated individuals. We also observed that breakthrough infections are associated with strong tissue compartmentalization and are only detectable in saliva in some cases. These data indicate that vaccination shortens the duration of time of high transmission potential, minimizes symptom duration, and may restrict tissue dissemination.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-101691

ABSTRACT

Repurposing clinically available drugs to treat the new coronavirus disease COVID-19 is an urgent need in these early stages of the SARS-CoV-2 pandemic, when very few treatment options are available. The iminosugar Miglustat is a well-characterized drug for the treatment of rare genetic lysosome storage diseases such as Gaucher and Niemann-Pick type C, and has also been described to be active against a variety of enveloped viruses. The activity of Miglustat is here demonstrated for SARS-CoV-2 at concentrations achievable in the plasma by current clinical regimens without cytotoxicity. The drug acts at the post-entry level and leads to a marked decrease of viral proteins and release of infectious virus. The mechanism resides in the inhibitory activity towards -glucosidases that are involved in early stages of glycoprotein N-linked oligosaccharide processing in the endoplasmic reticulum, leading to a marked decrease of the viral Spike protein. The wealth of available data on the clinical use of Miglustat for the treatment of lysosomal storage disorders and the antiviral properties against SARS-CoV-2 make it an ideal candidate for drug repurposing.

SELECTION OF CITATIONS
SEARCH DETAIL
...