Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(23): 15825-15832, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38819390

ABSTRACT

Catalytic π-arene activation is based on catalysts that allow for arene exchange. To date, cyclopentadiene (Cp)-derived catalysts are the most commonly used in π-arene activation despite their low arene exchange rates. Herein, we report the synthesis, analysis, and catalytic application of Ru(II) complexes supported by phenoxo ligands, which are isolobal alternatives to Cp. The phenoxo complexes exhibit arene exchange rates significantly faster than those of the corresponding Cp complexes. The rate can be further increased through the choice of appropriate counterions. The mechanism of the arene exchange process is elucidated by kinetic and computational analyses. We demonstrate the utility of the new catalysts through an SNAr reaction between fluorobenzene and alcohols, including secondary alcohols that could not be used previously in related reactions. Moreover, the catalytic thermal decarboxylation of phenylacetic acids is presented.

2.
bioRxiv ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38045405

ABSTRACT

G-protein-coupled receptors (GPCRs) regulate several physiological and pathological processes and represent the target of approximately 30% of FDA-approved drugs. GPCR-mediated signaling was thought to occur exclusively at the plasma membrane. However, recent studies have unveiled their presence and function at subcellular membrane compartments. There is a growing interest in studying compartmentalized signaling of GPCRs. This requires development of novel tools to separate GPCRs signaling at the plasma membrane from the ones initiated at intracellular compartments. We took advantage of the structural and pharmacological information available for ß1-adrenergic receptor (ß1AR), an exemplary GPCR that functions at subcellular compartments, and rationally designed spatially restricted antagonists. We generated a cell impermeable ß1AR antagonist by conjugating a suitable pharmacophore to a sulfonate-containing fluorophore. This cell-impermeable antagonist only inhibited ß1AR on the plasma membrane. In contrast, a cell permeable ß1AR agonist containing a non-sulfonated fluorophore, efficiently inhibited both the plasma membrane and Golgi pools of ß1ARs. Furthermore, the cell impermeable antagonist selectively inhibited the phosphorylation of downstream effectors of PKA proximal to the plasma membrane in adult cardiomyocytes while ß1AR intracellular pool remained active. Our tools offer promising avenues for investigating compartmentalized ß1AR signaling in various context, potentially advancing our understanding of ß1AR-mediated cellular responses in health and disease. They also offer a general strategy to study compartmentalized signaling for other GPCRs in various biological systems.

3.
Chemistry ; 28(50): e202201339, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-35700354

ABSTRACT

The functionalisation of peptides at a late synthesis stage holds great potential, for example, for the synthesis of peptide pharmaceuticals, fluorescent biosensors or peptidomimetics. Here we describe an on-resin iodination-substitution reaction sequence on homoserine that is also suitable for peptide modification in a combinatorial format. The reaction sequence is accessible to a wide range of sulfur nucleophiles with various functional groups including boronic acids, hydroxy groups or aromatic amines. In this way, methionine-like thioethers or thioesters and thiosulfonates are accessible. Next to sulfur nucleophiles, selenols, pyridines and carboxylic acids were successfully used as nucleophiles, whereas phenols did not react. The late-stage iodination-substitution approach is not only applicable to short peptides but also to the more complex 34-amino-acid WW domains. We applied this strategy to introduce 7-mercapto-4-methylcoumarin into a switchable ZnII responsive WW domain to design an iFRET-based ZnII sensor.


Subject(s)
Halogenation , Peptidomimetics , Amino Acids/chemistry , Peptides/chemistry , Sulfur
SELECTION OF CITATIONS
SEARCH DETAIL
...