Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 178: 108772, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38917532

ABSTRACT

BACKGROUND: Despite the recent advances in computational fluid dynamics (CFD) techniques applied to blood flow within the left atrium (LA), the relationship between atrial geometry, flow patterns, and blood stasis within the left atrial appendage (LAA) remains unclear. A better understanding of this relationship would have important clinical implications, as thrombi originating in the LAA are a common cause of stroke in patients with atrial fibrillation (AF). AIM: To identify the most representative atrial flow patterns on a patient-specific basis and study their influence on LAA blood stasis by varying the flow split ratio and some common atrial modeling assumptions. METHODS: Three recent techniques were applied to nine patient-specific computational fluid dynamics (CFD) models of patients with AF: a kinematic atrial model to isolate the influence of wall motion because of AF, projection on a universal LAA coordinate system, and quantification of stagnant blood volume (SBV). RESULTS: We identified three different atrial flow patterns based on the position of the center of the main circulatory flow. The results also illustrate how atrial flow patterns are highly affected by the flow split ratio, increasing the SBV within the LAA. As the flow split ratio is determined by the patient's lying position, the results suggest that the most frequent position adopted while sleeping may have implications for the medium- and long-term risks of stroke.

2.
Article in English | MEDLINE | ID: mdl-38753292

ABSTRACT

A data-driven reduced order model (ROM) based on a proper orthogonal decomposition-radial basis function (POD-RBF) approach is adopted in this paper for the analysis of blood flow dynamics in a patient-specific case of atrial fibrillation (AF). The full order model (FOM) is represented by incompressible Navier-Stokes equations, discretized with a finite volume (FV) approach. Both the Newtonian and the Casson's constitutive laws are employed. The aim is to build a computational tool able to efficiently and accurately reconstruct the patterns of relevant hemodynamics indices related to the stasis of the blood in a physical parametrization framework including the cardiac output in the Newtonian case and also the plasma viscosity and the hematocrit in the non-Newtonian one. Many FOM-ROM comparisons are shown to analyze the performance of our approach as regards errors and computational speed-up.

3.
ArXiv ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-37873014

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, affecting over 1% of the population. It is usually triggered by irregular electrical impulses that cause the atria to contract irregularly and ineffectively. It increases blood stasis and the risk of thrombus formation within the left atrial appendage (LAA) and aggravates adverse atrial remodeling. Despite recent efforts, LAA flow patterns representative of AF conditions and their association with LAA stasis remain poorly characterized. AIM: To develop reduced-order data-driven models of LAA flow patterns during atrial remodeling in order to uncover flow disturbances concurrent with LAA stasis that could add granularity to clinical decision criteria. METHODS: We combined a geometric data augmentation process with projection of results from 180 CFD atrial simulations on a universal LAA coordinate (ULAAC) system. The projection approach enhances data visualization and facilitates direct comparison between different anatomical and functional states. ULAAC projections were used as input for a proper orthogonal decomposition (POD) algorithm to build reduced-order models of hemodynamic metrics, extracting flow characteristics associated with AF and non-AF anatomies. RESULTS: We verified that the ULAAC system provides an adequate representation to visualize data distributions on the LAA surface and to build POD-based reduced-order models. These models revealed significant differences in LAA flow patterns for atrial geometries that underwent adverse atrial remodeling and experienced elevated blood stasis. Together with anatomical morphing-based patient-specific data augmentation, this approach could facilitate data-driven analyses to identify flow features associated with thrombosis risk due to atrial remodeling.

4.
Micromachines (Basel) ; 14(10)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37893323

ABSTRACT

A computational fluid dynamics (CFD) model of blood flow through hyperbolic contraction with a discrete phase model (DPM) was experimentally validated. For this purpose, the positions and velocities of red blood cells (RBCs) flowing in a microchannel with hyperbolic contraction were experimentally assessed using image analysis techniques, and were subsequently compared with the numerical results. The numerically and experimentally obtained velocity fields were in good agreement, with errors smaller than 10%. Additionally, a nearly constant strain rate was observed in the contraction region, which can be attributed to the quasilinear increase in the velocity along the hyperbolic contraction. Therefore, the numerical technique used was validated due to the close similarity between the numerically and experimentally obtained results. The tested CFD model can be used to optimize the microchannel design by minimizing the need to fabricate prototypes and evaluate them experimentally.

5.
J Environ Manage ; 322: 116125, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36067672

ABSTRACT

Acid mine drainage (AMD), formed by the instability of sulfides, typically generates acidity and releases potentially toxic elements and sulfate to the environment, among other pollutants. An example is the group of rare earth elements (REE) that may have high toxic behavior. This toxicity leads to degradation of soils, water reservoirs and rivers, promoting serious risks for the ecosystems. So, the main goal of the present work is to study the hydrochemical properties of a system with mine-influenced waters during the rainy season, focusing on the origin, evolution/behavior, and concentration of REE. The study area is the São Domingos mining complex, located in one of the largest metallogenetic provinces in the world (Iberian Pyrite Belt), known by the evidences of AMD contamination. The obtained results reveal extraordinarily low pH (0.4), high electrical conductivity, reaching 26,200 µS/cm, and high values of sulfate and acidity. Regarding the REE, the determined concentration exceeded that observed in normal pH of neutral freshwaters by 2-3 times the order of magnitude. The results revealed that Y and Ce are distinguished in practically all sampled sites, due to its higher concentrations, with maximum values of 221.8 and 166.9 µg/L. In general, the concentrations increase as the water pH decreases. The statistical analysis indicates that REE elements may have a common origin, mutual dependence, and similar behavior during transport with typical AMD elements and composition of host rocks. Most samples show enrichment in middle REE (MREE) (Gdn/Lun), like the classic signature of AMD. In turn, colloids and AMD-precipitates may be participating in the incorporation of these elements. Therefore, due to potential risk of impacts on ecosystems, REE are a topic of relevant interest for future studies in order to assist monitoring processes and help government decisions related to water quality management.


Subject(s)
Metals, Rare Earth , Water Pollutants, Chemical , Acids/analysis , Ecosystem , Environmental Monitoring/methods , Metals, Rare Earth/analysis , Soil , Sulfates/analysis , Sulfides/analysis , Water Pollutants, Chemical/analysis
6.
Comput Biol Med ; 133: 104423, 2021 06.
Article in English | MEDLINE | ID: mdl-33957460

ABSTRACT

BACKGROUND: Recently, advances in medical imaging, segmentation techniques, and high-performance computing have supported the use of patient-specific computational fluid dynamics (CFD) simulations. At present, CFD-compatible atrium geometries can be easily reconstructed from atrium images, providing important insight into the atrial fibrillation (AF) phenomenon, and assistance during therapy selection and surgical procedures. However, the hypothesis assumed for such CFD models should be adequately validated. AIM: This work aims to perform an extensive study of the different hypotheses that are commonly assumed when performing atrial simulations for AF patients, as well as to evaluate and compare the range of indices that are usually applied to assess thrombus formation within the left atrium appendage (LAA). METHODS: The atrial geometries of two AF patients have been segmented. The resulting geometries have been registered and interpolated to construct a dynamic mesh, which has been employed to compare the rigid and flexible models. Two families of hemodynamic indices have been calculated and compared: wall shear-based and blood age distribution-based. RESULTS: The findings of this study illustrate the importance of validating the rigid atrium hypothesis when utilizing an AF CFD model. In particular, the absence of the A-wave contraction does not avoid a certain degree of passive atrial contraction, making the rigid model a poor approximation in some cases. Moreover, a new thrombosis predicting index has been proposed, i.e., M4, which has been shown to predict stasis more effectively than other indicators.


Subject(s)
Atrial Appendage , Atrial Fibrillation , Thrombosis , Atrial Fibrillation/diagnostic imaging , Heart Atria/diagnostic imaging , Humans , Hydrodynamics
7.
Ann Biomed Eng ; 49(6): 1507-1520, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33403454

ABSTRACT

The most common type of cardiac arrhythmia is atrial fibrillation (AF), which is characterised by irregular and ineffective atrial contraction. This behaviour results into the formation of thrombi, mainly in the left atrial appendage (LAA), responsible for thromboembolic events. Very different approaches are considered as therapy for AF patients. Therefore, it is necessary to yield insight into the flow physics of thrombi formation to determine which is the most appropriate strategy in each case. Computational Fluid Dynamics (CFD) has proven successful in getting a better understanding of the thrombosis phenomenon, but it still requires validation by means of accurate flow field in vivo atrial measurements. As an alternative, in this paper it is proposed an in vitro flow validation, consisting in an idealised model that captures the main flow features observed in the human LA which, once combined with Particle Image Velocimetry (PIV) measurements, provides readily accessible, easy to emulate, detailed velocity fields. These results have been used to validate our laminar and Large Eddy Simulation (LES) simulations. Besides, we have run a parametric study of different boundary conditions sets previously employed in the literature. These data can be used as a benchmark for further development of LA CFD models.


Subject(s)
Atrial Fibrillation/physiopathology , Atrial Function , Heart Atria/physiopathology , Models, Cardiovascular , Computer Simulation , Coronary Circulation , Humans , Hydrodynamics , Rheology
8.
Chemosphere ; 138: 691-700, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26247412

ABSTRACT

Rare earth elements (REE) were used to assess attenuation processes in a passive system for acid mine drainage treatment (Jales, Portugal). Hydrochemical parameters and REE contents in water, soils and sediments were obtained along the treatment system, after summer and winter. A decrease of REE contents in the water resulting from the interaction with limestone after summer occurs; in the wetlands REE are significantly released by the soil particles to the water. After winter, a higher water dynamics favors the AMD treatment effectiveness and performance since REE contents decrease along the system; La and Ce are preferentially sequestered by ochre sludge but released to the water in the wetlands, influencing the REE pattern of the creek water. Thus, REE fractionation occurs in the passive treatment systems and can be used as tracer to follow up and understand the geochemical processes that promote the remediation of AMD.


Subject(s)
Environmental Restoration and Remediation/methods , Metals, Rare Earth/analysis , Mining , Soil/chemistry , Water Pollutants, Chemical/analysis , Wetlands , Portugal , Seasons
9.
Int J Phytoremediation ; 16(7-12): 1087-103, 2014.
Article in English | MEDLINE | ID: mdl-24933904

ABSTRACT

Waste dumps resulting from metal exploitation create serious environmental damage, providing soil and water degradation over long distances. Phytostabilization can be used to remediate these mining sites. The present study aims to evaluate the behavior of selected plant species (Erica arborea, Ulex europaeus, Agrostis delicatula, and Cytisus multiflorus) that grow spontaneously in three sulfide-rich waste-dumps (Lapa Grande, Cerdeirinha, and Penedono, Portugal). These sites represent different geological, climatic and floristic settings. The results indicate distinctive levels and types of metal contamination: Penedono presents highest sulfate and metal contents, especially As, with low levels of Fe. In contrast, at Lapa Grande and Cerdeirinha Fe, Mn, and Zn are the dominant metals. In accordance, each waste dump develops a typical plant community, providing a specific vegetation inventory. At Penedono, Agrostis delicatula accumulates As, Pb, Cu, Mn, and Zn, showing higher bioaccumulation factors (BF) for Mn (32.1) and As (24.4). At Cerdeirinha, Ulex europaeus has the highest BF for Pb (984), while at Lapa Grande, Erica arborea presents high BF for Mn (9.8) and Pb (8.1). Regarding TF, low values were obtained for most of the metals, especially As (TF < 1). Therefore, the results obtained from representative plant species suggest appropriate behavior for phytostabilization measures.


Subject(s)
Agrostis/metabolism , Arsenic/metabolism , Ericaceae/metabolism , Fabaceae/metabolism , Metals, Heavy/metabolism , Soil Pollutants/metabolism , Agrostis/growth & development , Arsenic/analysis , Biodegradation, Environmental , Biological Transport , Biomass , Cytisus/growth & development , Cytisus/metabolism , Ericaceae/growth & development , Fabaceae/growth & development , Metals, Heavy/analysis , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Portugal , Rhizosphere , Soil/chemistry , Soil Pollutants/analysis , Sulfides/analysis , Ulex/growth & development , Ulex/metabolism , Waste Disposal Facilities
SELECTION OF CITATIONS
SEARCH DETAIL
...