Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
One Health ; 18: 100714, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38596323

ABSTRACT

The global spread of highly pathogenic avian influenza (HPAI) A (H5N1) clade 2.3.4.4b virus since 2021 necessitates a re-evaluation of the role of vaccination in controlling HPAI outbreaks among poultry, which has been controversial because of the concern of silent spread with viral mutation and spillover to human. We systematically reviewed and meta-analyzed all existing data from experimental challenge trials to assess the efficacy of HPAI vaccines against mortality in specific pathogen free (SPF) chickens, with evaluation of the certainty of evidence (CoE) using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. Out of 223 screened publications, 46 trials met our eligibility criteria. Inactivated vaccines showed an efficacy of 95% (risk ratio [RR] = 5% [95% CI: 1% to 17%], I2 = 0%, CoE high) against homologous strains and an efficacy of 78% (RR = 22% [95% CI: 14% to 37%], I2 = 18%, CoE high) against heterologous strains (test for subgroup difference p = 0.02). Live recombinant vaccines exhibited the highest efficacy at 97% (RR = 3% [95% CI: 1% to 13%], I2 = 0%, CoE high). Inactivated recombinant vaccines had an overall efficacy of 90% (RR = 10% [95% CI: 6% to 16%], I2 = 47%, CoE high). Commercial vaccines showed an overall efficacy of 91% (RR = 9% [95% CI: 5% to 17%], I2 = 23%, CoE high), with 96% efficacy (RR = 4% [95% CI: 1% to 21%], I2 = 0%, CoE high) against homologous strains and 90% efficacy (RR = 10% [95% CI: 5% to 20%], I2 = 31%, CoE moderate) against heterologous strains. Our systematic review offers an updated and unbiased assessment of vaccine efficacy against HPAI-related mortality, providing timely and crucial information for re-evaluating the role of vaccination in poultry avian influenza control policy amist the global HPAI outbreak post-2021.

2.
J Biol Chem ; 285(21): 15884-93, 2010 May 21.
Article in English | MEDLINE | ID: mdl-20233727

ABSTRACT

Helicases make conformational changes and mechanical movements through hydrolysis of NTP to unwind duplex DNA (or RNA). Most helicases require a single-stranded overhang for loading onto the duplex DNA substrates. Some helicases have been observed to exhibit an enhanced unwinding efficiency with increasing length of the single-stranded DNA tail both by preventing reannealing of the unwound DNA and by compensating for premature dissociation of the leading monomers. Here we report a previously unknown mutual inhibition of neighboring monomers in DNA unwinding by the monomeric Escherichia coli RecQ helicase. With single molecule fluorescence resonance energy transfer microscopy, we observed that the unwinding initiation of RecQ at saturating concentrations was more delayed for a long rather than a short tailed DNA. In stopped-flow kinetic studies under both single and multiple turnover conditions, the unwinding efficiency decreased with increasing enzyme concentration for long tailed substrates. In addition, preincubation of RecQ and DNA in the presence of 5'-adenylyl-beta,gamma-imidodiphosphate was observed to alleviate the inhibition. We propose that the mutual inhibition effect results from a forced closure of cleft between the two RecA-like domains of a leading monomer by a trailing one, hence the forward movements of both monomers are stalled by prohibition of ATP binding to the leading one. This effect represents direct evidence for the relative movements of the two RecA-like domains of RecQ in DNA unwinding. It may occur for all superfamily I and II helicases possessing two RecA-like domains.


Subject(s)
DNA, Bacterial/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , RecQ Helicases/chemistry , DNA, Bacterial/metabolism , Escherichia coli Proteins/metabolism , Protein Structure, Tertiary , RecQ Helicases/metabolism
3.
Biochem Biophys Res Commun ; 388(1): 137-40, 2009 Oct 09.
Article in English | MEDLINE | ID: mdl-19654001

ABSTRACT

A method that can pinpoint control DNA denaturation is reported. In the single molecule experiment using spFRET, DNA adhered on a quartz surface is acted upon by both a weak laser field force and a fast temporal mechanical force. The experiment showed that increasing strengths of laser power result in increasing percentage of denatured DNA; different mechanical forces produce different numbers of DNA opening. Besides the method's simplicity and convenience for DNA melting, its crucial advantage and potential application is the ability to denature DNA at specified locations, i.e., a weak laser and a fast temporal mechanical force can be used in pinpoint denaturation of short DNA.


Subject(s)
DNA/chemistry , Fluorescence Resonance Energy Transfer/methods , Nucleic Acid Conformation , Nucleic Acid Denaturation , Cytosine/chemistry
4.
Nucleic Acids Res ; 36(6): 1976-89, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18276648

ABSTRACT

PcrA helicase, a member of the superfamily 1, is an essential enzyme in many bacteria. The first crystal structures of helicases were obtained with PcrA. Based on structural and biochemical studies, it was proposed and then generally believed that PcrA is a monomeric helicase that unwinds DNA by an inchworm mechanism. But a functional state of PcrA from unwinding kinetics studies has been lacking. In this work, we studied the kinetic mechanism of PcrA-catalysed DNA unwinding with fluorometric stopped-flow method under both single- and multiple-turnover conditions. It was found that the PcrA-catalysed DNA unwinding depended strongly on the PcrA concentration as well as on the 3'-ssDNA tail length of the substrate, indicating that an oligomerization was indispensable for efficient unwinding. Study of the effect of ATP concentration on the unwinding rate gave a Hill coefficient of approximately 2, suggesting strongly that PcrA functions as a dimer. It was further determined that PcrA unwound DNA with a step size of 4 bp and a rate of approximately 9 steps per second. Surprisingly, it was observed that PcrA unwound 12-bp duplex substrates much less efficiently than 16-bp ones, highlighting the importance of protein-DNA duplex interaction in the helicase activity. From the present studies, it is concluded that PcrA is a dimeric helicase with a low processivity in vitro. Implications of the experimental results for the DNA unwinding mechanism of PcrA are discussed.


Subject(s)
Bacterial Proteins/chemistry , DNA Helicases/chemistry , Adenosine Triphosphate/metabolism , Bacterial Proteins/metabolism , DNA/chemistry , DNA/metabolism , DNA Helicases/metabolism , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , Dimerization , Fluorescence Resonance Energy Transfer , Geobacillus stearothermophilus/enzymology , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...