Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Biochem ; 43(9): e12973, 2019 09.
Article in English | MEDLINE | ID: mdl-31489660

ABSTRACT

We investigated the antiasthmatic effect of mogroside V (Mog V) in mice with ovalbumin (OVA)-induced asthma. Administration of Mog V effectively attenuated OVA-induced airway hyperresponsiveness and reduced the number of inflammatory cells in bronchoalveolar lavage fluid (BALF). Histological examination showed that Mog V reduced the inflammatory infiltration of the lungs in the asthmatic mice. ELISAs suggested that Mog V effectively decreased the levels of IL-4, IL-5, and IL-13 in BALF and serum levels of OVA-specific IgE and IgG1 in the asthmatic mice. A quantitative reverse-transcription PCR assay also indicated that Mog V decreased the mRNA levels of IL-17A, IL-23, and RORγt in the lungs of the asthmatic mice (the opposite effect on Foxp3 mRNA). Furthermore, Mog V significantly reduced the OVA-induced activation of NF-κB in the lungs. This study indicates that Mog V alleviates OVA-induced inflammation in airways, and this effect is associated with a reduction in NF-κB activation. PRACTICAL APPLICATIONS: A traditional Chinese medicine herb has been reported to have a strong curative effect on asthma in clinical practice. Siraitia grosvenorii is known in China as a functional food product with the ability to improve lung function. Mogroside V is a triterpene glycoside isolated from S. grosvenorii. Nonetheless, the antiasthmatic effect of mogroside V has not been evaluated yet. The aim of this study was to investigate the antiasthmatic activity of mogroside V in mice with chemically induced asthma. The data from this study will provide some scientific evidence supporting wider use of S. grosvenorii in functional foods.


Subject(s)
Asthma/chemically induced , Asthma/drug therapy , Ovalbumin/toxicity , Triterpenes/therapeutic use , Animals , Bronchoalveolar Lavage Fluid/cytology , Cytokines/metabolism , Eosinophils/drug effects , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Lymphocytes/drug effects , Macrophages/drug effects , Male , Mice , Molecular Structure , Neutrophils/drug effects , Random Allocation , Triterpenes/chemistry
2.
Int Orthop ; 40(7): 1545-52, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26498175

ABSTRACT

PURPOSE: Wear debris-induced osteolysis and aseptic loosening are the most frequent late complications of total joint arthroplasty leading to revision of the prosthesis. However, no effective measures for the prevention and treatment of particles-induced osteolysis currently exist. Here, we investigated the efficacy of local administration of osthole on tricalcium phosphate (TCP) particles-induced osteolysis in a murine calvarial model. METHODS: TCP particles were implanted over the calvaria of ICR mice, and established TCP particles-induced osteolysis model. On days one, four, seven, ten and thirteen post-surgery, osthole (10 mg/kg) or phosphate buffer saline (PBS) were subcutaneously injected into the calvaria of TCP particles-implanted or sham-operated mice. Two weeks later, blood, the periosteum and the calvaria were collected and processed for bone turnover markers, pro-inflammatory cytokine, histomorphometric and molecular analysis. RESULTS: Osthole (10 mg/kg) markedly prevented TCP particles-induced osteoclastogenesis and bone resorption in a mouse calvarial model. Osthole also inhibited the decrease of serum osteocalcin level and calvarial alkaline phosphatase (ALP) activity, and prevented the increase in the activity of tartrate resistant acid phosphatase (TRAP) and cathepsin K in the mouse calvaria. Furthermore, osthole obviously reduced the release of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) into the periosteum. Western blotting demonstrated TCP particles caused a remarkable endoplasmic reticulum (ER) stress response in the mouse calvaria, which was obviously blocked by osthole treatment. CONCLUSION: These results suggest that local administration of osthole inhibits TCP particles-induced osteolysis in the mouse calvarial in vivo, which may be mediated by inhibition of the ER stress signaling pathway, and it will be developed as a new drug in the prevention and treatment of destructive diseases caused by prosthetic wear particles.


Subject(s)
Adjuvants, Immunologic/pharmacology , Calcium Phosphates/pharmacology , Coumarins/pharmacology , Osteolysis/drug therapy , Animals , Blotting, Western , Cytokines/metabolism , Disease Models, Animal , Male , Mice , Mice, Inbred ICR , Osteoclasts/drug effects , Osteolysis/pathology , Prostheses and Implants/adverse effects , Signal Transduction , Skull/drug effects , Skull/metabolism , Tartrate-Resistant Acid Phosphatase
SELECTION OF CITATIONS
SEARCH DETAIL
...