Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 35(16)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38154139

ABSTRACT

Preparing Cd3As2, which is a three-dimensional (3D) Dirac semimetal in certain crystal orientation, on Si is highly desirable as such a sample may well be fully compatible with existing Si CMOS technology. However, there is a dearth of such a study regarding Cd3As2films grown on Si showing the chiral anomaly. Here,for the first time, we report the novel preparation and fabrication technique of a Cd3As2(112) film on a Si (111) substrate with a ZnTe (111) buffer layer which explicitly shows the chiral anomaly with a nontrivial Berry's phase ofπ. Despite the Hall carrier density (n3D≈9.42×1017cm-3) of our Cd3As2film, which is almost beyond the limit for the portents of a 3D Dirac semimetal to emerge, we observe large linear magnetoresistance in a perpendicular magnetic field and negative magnetoresistance in a parallel magnetic field. These results clearly demonstrate the chiral magnetic effect and 3D Dirac semimetallic behavior in our silicon-based Cd3As2film. Our tailoring growth of Cd3As2on a conventional substrate such as Si keeps the sample quality, while also achieving a low carrier concentration.

2.
ACS Appl Mater Interfaces ; 14(17): 20151-20158, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35468278

ABSTRACT

Array-patterned CoPd-based heterostructures are created through e-beam lithography and plasma pretreatment that induces oxidation with depth gradient in the CoPd alloy films, breaking the central symmetry of the structure. Effects on the magnetic properties of the follow-up hydrogenation of the thin film are observed via magneto-optic Kerr effect microscopy. The system exhibits a strong vertical and lateral antiferromagnetic coupling in the perpendicular component between the areas with and without plasma pretreatment, and asymmetric domain-wall propagation in the plasma-pretreated areas during magnetization reversal. These phenomena exhibit evident magnetic chirality and can be interpreted with the Ruderman-Kittel-Kasuya-Yosida coupling and the Dzyaloshinskii-Moriya interaction (DMI). The sample processing demonstrated in this study allows easy incorporation of lithography techniques that can define areas with or without DMI to create intricate magnetic patterns on the sample, which provides an avenue toward more sophisticated control of canted spin textures in future spintronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...