Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Biomed Mater Eng ; 35(4): 351-363, 2024.
Article in English | MEDLINE | ID: mdl-38669519

ABSTRACT

BACKGROUND: Wearing protective helmets is an important prevention strategy to reduce work-related traumatic brain injuries. The existing standardized testing systems are used for quality control and do not provide a quantitative measure of the helmet performance. OBJECTIVE: To analyze the failure characterizations of Type I industrial helmets and develop a generalized approach to quantify the shock absorption performance of Type I industrial helmets based on the existing standardized setups. METHODS: A representative basic Type I construction helmet model was selected for the study. Top impact tests were performed on the helmets at different drop heights using two different impactor masses (3.6 and 5.0 kg). RESULTS: When the helmets were impacted with potential impact energies smaller than the critical potential impact energy values, there was a consistent relationship between the peak impact force and the potential impact energy. When the helmets were impacted under potential impact energies greater than the critical potential impact energy values, the peak impact forces increased steeply with increasing potential impact energy. CONCLUSION: A concept of safety margin for construction helmets based on potential impact energy was introduced to quantify the helmets' shock absorption performance. The proposed method will help helmet manufacturers improve their product quality.


Subject(s)
Equipment Design , Head Protective Devices , Materials Testing , Humans , Brain Injuries, Traumatic/prevention & control
2.
Ann Biomed Eng ; 50(11): 1565-1578, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35124769

ABSTRACT

The performance of Type I industrial helmets for fall protection is not required to be tested in standardized tests. The current study analyzed the fall protection performance of Type I industrial helmets and evaluated if the use of a chin strap and the suspension system tightness have any effect on protection performance. Head impact tests were performed using an instrumented manikin. There were 12 combinations of test conditions: with or without chin strap usage, three levels of suspension system tightness, and two impact surfaces. Four representative helmet models (two basic and two advanced models) were selected for the study. Impact tests without a helmet under all other applicable test conditions were used as a control group. There were four replicates for each test condition-a total of 192 impact tests with helmets and eight impact tests for the control group. The peak acceleration and the calculated head impact criteria (HIC) were used to evaluate shock absorption performance of the helmets. The results showed that all four helmet models demonstrated excellent performance for fall protection compared to the barehead control group. The fall protection performance of the advanced helmet models was substantially better than the basic helmet models. However, the effects of the use of chin straps and suspension system tightness on the helmets' fall protection performance were statistically not significant.


Subject(s)
Craniocerebral Trauma , Head Protective Devices , Humans , Acceleration , Craniocerebral Trauma/prevention & control
3.
Biomed Mater Eng ; 32(1): 1-14, 2021.
Article in English | MEDLINE | ID: mdl-33252060

ABSTRACT

BACKGROUND: The use of helmets was considered to be one of the important prevention strategies employed on construction sites. The shock absorption performance of a construction (or industrial) helmet is its most important performance parameter. Industrial helmets will experience cumulative structural damage when being impacted repeatedly with impact magnitudes greater than its endurance limit. OBJECTIVE: The current study is to test if the shock absorption performance of Type I construction helmets subjected to repeated impacts can be improved by applying polyethylene air-bubble cushions to the helmet suspension system. METHODS: Drop impact tests were performed using a commercial drop tower test machine following the ANSI Z89.1 Type I drop impact protocol. Typical off-the-shelf Type I construction helmets were evaluated in the study. A 5 mm thick air-bubble cushioning liner was placed between the headform and the helmet to be tested. Helmets were impacted ten times at different drop heights from 0.61 to 1.73 m. The effects of the air-bubble cushioning liner on the helmets' shock absorption performance were evaluated by comparing the peak transmitted forces collected from the original off-the-shelf helmet samples to the helmets equipped with air-bubble cushioning liners. RESULTS: Our results showed that a typical Type I construction helmet can be subjected to repeated impacts with a magnitude less than 22 J (corresponding to a drop height 0.61 m) without compromising its shock absorption performance. In comparison, the same construction helmet, when equipped with an air-bubble cushioning liner, can be subjected to repeated impacts of a magnitude of 54 J (corresponding to a drop height 1.52 m) without compromising its shock absorption performance. CONCLUSIONS: The results indicate that the helmet's shock absorbing endurance limit has been increased by 145% with addition of an air-bubble cushioning liner.


Subject(s)
Head Protective Devices , Polyethylene , Acceleration
4.
Appl Ergon ; 90: 103276, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32987261

ABSTRACT

The objective of this study was to assess the impact of using alternative mast climbing work platform (MCWP) designs on trunk motion and postural stability with masonry workers while performing bricklaying and stepping down tasks using a conventional MCWP setting (i.e. with a step deck) as well as two types of production tables (straight- and L-shaped). The trunk angles and postural sway parameters of twenty-five masonry workers were recorded for the following tasks: (1) standing on a simulated MCWP and laying bricks on an adjacent wall, and (2) stepping down onto the step deck to get into position for doing the bricklaying task. Results indicated that the use of the L-shaped production table resulted in the lowest trunk ranges of motion and significantly reduced the workers' trunk angles in all three planes when compared to both the straight-shaped production table and the conventional approach of not using a production table. Data showed that both body sway velocity and area were significantly reduced when using either one of the production tables. The use of production tables significantly reduced impact sway forces when workers stepped from the main platform to the step deck. The use of production tables on MCWPs improved workers' postures and overall stability, which could reduce the risk of injury.


Subject(s)
Postural Balance , Posture , Biomechanical Phenomena , Humans , Torso , Workplace
5.
J Test Eval ; 49(3)2020 Oct 27.
Article in English | MEDLINE | ID: mdl-35924119

ABSTRACT

The helmets used by construction site workers are mainly designed for head protection when objects are dropped from heights. Construction helmets are also casually called "hard hats" in industries. Common construction helmets are mostly categorized as type 1 according to different standards. All type 1 helmets have to pass type 1 standard impact tests, which are top impact tests-the helmet is fixed and is impacted by a free falling impactor on the top crown of the helmet shell. The purpose of this study was to develop an approach that can determine the performance characterization of a helmet. A total of 31 drop impact tests using a representative type 1 helmet model were performed at drop heights from 0.30 to 2.23 m, which were estimated to result in impact speeds from 2.4 to 6.6 m/s. Based on our results, we identified a critical drop height that was used to evaluate the performance of helmets. The peak impact forces and peak accelerations varied nonproportionally with the drop height. When the drop height is less than the critical height, the peak force and peak acceleration increase gradually and slowly with increasing drop height. When the drop height is greater than the critical height, the peak force and peak acceleration increase steeply with even a slight increase in drop height. Based on the critical drop height, we proposed an approach to determine the safety margin of a helmet. The proposed approach would make it possible to determine the performance characteristics of a helmet and to estimate the safety margin afforded by the helmet, if the helmet first passes the existing standardized tests. The proposed test approach would provide supplementary information for consumers to make knowledgeable decisions when selecting construction helmets.

6.
Eng Fail Anal ; 96: 330-339, 2019 Feb.
Article in English | MEDLINE | ID: mdl-31555053

ABSTRACT

It is accepted in industries that an industrial helmet should be disposed of when it is subjected to a significant impact. There is no scientific evidence that supports this well-accepted belief. The current study was intended to evaluate the shock absorption performance of industrial helmets under repeated impacts. Common industrial or construction helmets are categorized as Type I according to ANSI Z89.1 and they are designed to mainly protect top impacts. A representative basic Type I construction helmet model was selected in the study. Helmets were repeatedly impacted ten times using a commercial drop tower tester with an impactor (mass 3.6 kg) at different drop heights from 0.30 to 2.03 m. A total of 80 impact trials were performed in the study. The relationships of the transmitted force with the drop height and with impact number were analyzed. A new parameter - the endurance limit - was proposed to evaluate the shock absorption performance of a helmet. The helmets were observed to experience cumulative structural damage with increasing impact number, resulting in a degrading shock absorption performance, when being impacted repeatedly with magnitudes greater than the endurance limit. Repeated impacts with magnitudes smaller than the endurance limit did not cause measurable cumulative structural damage to the helmets in our study.

7.
Appl Ergon ; 65: 152-162, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28802434

ABSTRACT

Workers are at risk when entering (ingress) or exiting (egress) elevated scissor lifts. In this study, we recorded ground impact forces and postural sway from 22 construction workers while they performed ingress and egress between a scissor lift and an adjacent work surface with varying conditions: lift opening designs, horizontal and vertical gaps, and sloped work surfaces. We observed higher peak ground shear forces when using a bar-and-chain opening, with larger horizontal gap, with the lift surface more than 0.2 m below the work surface, and presence of a sloped (26°) work surface. Similar trends were observed for postural sway, except that the influence of vertical distance was not significant. To reduce slip/trip/fall risk and postural sway of workers while ingress or egress of an elevated scissor lift, we suggest scissor lifts be equipped with a gate-type opening instead of a bar-and-chain design. We also suggest the lift surface be placed no more than 0.2 m lower than the work surface and the horizontal gap between lift and work surfaces be as small as possible. Selecting a non-sloped surface to ingress or egress a scissor lift is also preferred to reduce risk.


Subject(s)
Accidental Falls , Accidents, Occupational , Construction Industry/instrumentation , Equipment Design , Postural Balance , Accidental Falls/prevention & control , Accidents, Occupational/prevention & control , Adolescent , Adult , Humans , Male , Movement , Occupational Health , Task Performance and Analysis , Young Adult
8.
Biomed Mater Eng ; 28(2): 187-199, 2017.
Article in English | MEDLINE | ID: mdl-28372270

ABSTRACT

The finite element (FE) method has been widely used to investigate the mechanism of traumatic brain injuries (TBIs), because it is technically difficult to quantify the responses of the brain tissues to the impact in experiments. One of technical challenges to build a FE model of a human head is the modeling of the cerebrospinal fluid (CSF) of the brain. In the current study, we propose to use membrane elements to construct the CSF layer. Using the proposed approach, we demonstrate that a head model can be built by using existing meshes available in commercial databases, without using any advanced meshing software tool, and with the sole use of native functions of the FE package Abaqus. The calculated time histories of the intracranial pressures at frontal, posterior fossa, parietal, and occipital positions agree well with the experimental data and the simulations in the literature, indicating that the physical effects of the CSF layer have been accounted for in the proposed modeling approach. The proposed modeling approach would be useful for bioengineers to solve practical problems.


Subject(s)
Brain Injuries, Traumatic/cerebrospinal fluid , Brain/pathology , Head/pathology , Brain/anatomy & histology , Brain Injuries, Traumatic/pathology , Computer Simulation , Finite Element Analysis , Head/anatomy & histology , Humans , Models, Anatomic , Models, Biological , Software
9.
Proc Inst Mech Eng H ; 231(1): 58-68, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28097935

ABSTRACT

Traumatic brain injuries are among the most common severely disabling injuries in the United States. Construction helmets are considered essential personal protective equipment for reducing traumatic brain injury risks at work sites. In this study, we proposed a practical finite element modeling approach that would be suitable for engineers to optimize construction helmet design. The finite element model includes all essential anatomical structures of a human head (i.e. skin, scalp, skull, cerebrospinal fluid, brain, medulla, spinal cord, cervical vertebrae, and discs) and all major engineering components of a construction helmet (i.e. shell and suspension system). The head finite element model has been calibrated using the experimental data in the literature. It is technically difficult to precisely account for the effects of the neck and body mass on the dynamic responses, because the finite element model does not include the entire human body. An approximation approach has been developed to account for the effects of the neck and body mass on the dynamic responses of the head-brain. Using the proposed model, we have calculated the responses of the head-brain during a top impact when wearing a construction helmet. The proposed modeling approach would provide a tool to improve the helmet design on a biomechanical basis.


Subject(s)
Brain Injuries, Traumatic/prevention & control , Head Protective Devices , Biomechanical Phenomena , Biomedical Engineering , Body Weight , Brain/anatomy & histology , Brain/physiology , Brain Injuries, Traumatic/etiology , Brain Injuries, Traumatic/physiopathology , Computer Simulation , Finite Element Analysis , Head/anatomy & histology , Head/physiology , Humans , Models, Anatomic , Models, Biological , Neck/anatomy & histology , Neck/physiology , Stress, Mechanical
10.
IEEE trans Intell Transp Syst ; 18(3): 595-607, 2017 03.
Article in English | MEDLINE | ID: mdl-27840592

ABSTRACT

Automated vehicles (AVs) must be thoroughly evaluated before their release and deployment. A widely used evaluation approach is the Naturalistic-Field Operational Test (N-FOT), which tests prototype vehicles directly on the public roads. Due to the low exposure to safety-critical scenarios, N-FOTs are time consuming and expensive to conduct. In this paper, we propose an accelerated evaluation approach for AVs. The results can be used to generate motions of the other primary vehicles to accelerate the verification of AVs in simulations and controlled experiments. Frontal collision due to unsafe cut-ins is the target crash type of this paper. Human-controlled vehicles making unsafe lane changes are modeled as the primary disturbance to AVs based on data collected by the University of Michigan Safety Pilot Model Deployment Program. The cut-in scenarios are generated based on skewed statistics of collected human driver behaviors, which generate risky testing scenarios while preserving the statistical information so that the safety benefits of AVs in nonaccelerated cases can be accurately estimated. The cross-entropy method is used to recursively search for the optimal skewing parameters. The frequencies of the occurrences of conflicts, crashes, and injuries are estimated for a modeled AV, and the achieved accelerated rate is around 2000 to 20 000. In other words, in the accelerated simulations, driving for 1000 miles will expose the AV with challenging scenarios that will take about 2 to 20 million miles of real-world driving to encounter. This technique thus has the potential to greatly reduce the development and validation time for AVs.

11.
IEEE trans Intell Transp Syst ; 17(3): 772-781, 2016 03.
Article in English | MEDLINE | ID: mdl-26924947

ABSTRACT

This paper presents an analysis of rearward gap acceptance characteristics of drivers of large trucks in highway lane change scenarios. The range between the vehicles was inferred from camera images using the estimated lane width obtained from the lane tracking camera as the reference. Six-hundred lane change events were acquired from a large-scale naturalistic driving data set. The kinematic variables from the image-based gap analysis were filtered by the weighted linear least squares in order to extrapolate them at the lane change time. In addition, the time-to-collision and required deceleration were computed, and potential safety threshold values are provided. The resulting range and range rate distributions showed directional discrepancies, i.e., in left lane changes, large trucks are often slower than other vehicles in the target lane, whereas they are usually faster in right lane changes. Video observations have confirmed that major motivations for changing lanes are different depending on the direction of move, i.e., moving to the left (faster) lane occurs due to a slower vehicle ahead or a merging vehicle on the right-hand side, whereas right lane changes are frequently made to return to the original lane after passing.

12.
Hum Factors ; 54(3): 358-72, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22768639

ABSTRACT

OBJECTIVE: The current study is intended to evaluate the stability of a scissor lift and the performance of various fall-arrest harnesses/lanyards during drop/fall-arrest conditions and to quantify the dynamic loading to the head/ neck caused by fall-arrest forces. BACKGROUND: No data exist that establish the efficacy of fall-arrest systems for use on scissor lifts or the injury potential from the fall incidents using a fall-arrest system. METHOD: The authors developed a multibody dynamic model of the scissor lift and a human lift operator model using ADAMS and LifeMOD Biomechanics Human Modeler. They evaluated lift stability for four fall-arrest system products and quantified biomechanical impacts on operators during drop/fall arrest, using manikin drop tests. Test conditions were constrained to flat surfaces to isolate the effect of manikin-lanyard interaction. RESULTS: The fully extended scissor lift maintained structural and dynamic stability for all manikin drop test conditions. The maximum arrest forces from the harnesses/lanyards were all within the limits of ANSI Z359.1. The dynamic loading in the lower neck during the fall impact reached a level that is typically observed in automobile crash tests, indicating a potential injury risk for vulnerable participants. CONCLUSION: Fall-arrest systems may function as an effective mechanism for fall injury protection for operators of scissor lifts. However, operators may be subjected to significant biomechanical loadings on the lower neck during fall impact. APPLICATION: Results suggest that scissor lifts retain stability under test conditions approximating human falls from predefined distances but injury could occur to vulnerable body structures.


Subject(s)
Accidental Falls/prevention & control , Accidents, Occupational/prevention & control , Lifting , Computer Simulation , Humans , Manikins , Neck/physiopathology
13.
Ergonomics ; 54(4): 367-79, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21491279

ABSTRACT

Fall-arrest systems (FASs) have been widely applied to provide a safe stop during fall incidents for occupational activities. The mechanical interaction and kinetic energy exchange between the human body and the fall-arrest system during fall impact is one of the most important factors in FAS ergonomic design. In the current study, we developed a systematic approach to evaluate the energy dissipated in the energy absorbing lanyard (EAL) and in the harness/manikin during fall impact. The kinematics of the manikin and EAL during the impact were derived using the arrest-force time histories that were measured experimentally. We applied the proposed method to analyse the experimental data of drop tests at heights of 1.83 and 3.35 m. Our preliminary results indicate that approximately 84-92% of the kinetic energy is dissipated in the EAL system and the remainder is dissipated in the harness/manikin during fall impact. The proposed approach would be useful for the ergonomic design and performance evaluation of an FAS. STATEMENT OF RELEVANCE: Mechanical interaction, especially kinetic energy exchange, between the human body and the fall-arrest system during fall impact is one of the most important factors in the ergonomic design of a fall-arrest system. In the current study, we propose an approach to quantify the kinetic energy dissipated in the energy absorbing lanyard and in the harness/body system during fall impact.


Subject(s)
Accidental Falls , Manikins , Mechanical Phenomena , Protective Devices , Algorithms , Humans , Kinetics
14.
J Safety Res ; 41(3): 213-20, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20630272

ABSTRACT

PROBLEM: Census of Fatal Occupational Injuries (CFOI) data indicate 306 aerial lift fatalities between 1992-2003. Seventy-eight of these fatalities specifically involved scissor lifts. Members of standards committees have requested that NIOSH conduct research to determine the effects of safety-control practices related to using fall-protection systems for scissor lifts. METHOD: This research examined the structural and dynamic stability of a scissor lift subjected to fall arrest forces. This was accomplished by conducting drop tests from a scissor lift. Anchorage locations evaluated included manufacturer-supplied anchorage points on the scissor lift platform as well as mid-rail and top-rail locations. RESULTS: Preliminary drop tests determined that a 2400 lb maximum arrest force (MAF) could be generated by dropping 169 lb through a fall height of 36" using Nystron rope as a lanyard. The scissor lift maintained structural and dynamic stability for all drop tests when fully extended and on an incline. DISCUSSION: Anchoring a fall arrest system to either the mid-rail or top-rail is not a recommended practice by the scissor lift manufacturer. Anchor points are provided on the platform floor of the scissor lift for this purpose. However, our results demonstrate that the mid-rail and top-rail absorb substantial energy from an arrested fall and may have potential as appropriate anchorage points. IMPACT TO INDUSTRY: Employers and workers should consider implementing fall arrest systems when using scissor lifts as part of their overall risk mitigation plan for fall injury prevention.


Subject(s)
Accidental Falls/prevention & control , Accidents, Occupational/prevention & control , Safety Management/methods , Accidental Falls/statistics & numerical data , Accidents, Occupational/statistics & numerical data , Equipment Design/methods , Humans , National Institute for Occupational Safety and Health, U.S. , Safety Management/statistics & numerical data , United States
15.
Ann Biomed Eng ; 37(6): 1177-89, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19296222

ABSTRACT

Construction workers often use stilts to raise them to a higher level above ground to perform many tasks, such as taping and sanding on the ceiling or upper half of a wall. Some epidemiological studies indicated that the use of stilts may place workers at increased risk for knee injuries or may increase the likelihood of trips and falls. In the present study, we developed an inverse dynamic model of stilts walking to investigate the effects of this activity on the joint moments and musculoskeletal loadings in the lower limbs. The stilts-walk model was developed using the commercial musculoskeletal simulation software AnyBody (version 3.0, Anybody Technology, Aalborg, Denmark). Simulations were performed using data collected from tests of four subjects. All subjects walked without or with stilts through a 12-m straight path. The moments of the knee, hip, and ankle joints, as well as forces in major muscles or muscle groups in the lower limbs, for stilts walking were compared with those for normal walking. Our simulations showed that the use of stilts may potentially increase the peak joint moment in knee extension by approximately 20%; induce 15% reduction and slight reduction in the peak joint moments in ankle plantar flexion and hip extension, respectively. The model predictions on the muscle forces indicated that the use of stilts may potentially increase loadings in five of eight major muscle groups in the lower extremities. The most remarkable was the force in rectus femoris muscle, which was found to potentially increase by up to 1.79 times for the stilts walking compared to that for the normal walking. The proposed model would be useful for the engineers in their efforts to improve the stilts design to reduce musculoskeletal loadings and fall risk.


Subject(s)
Gait/physiology , Joints/physiology , Leg/physiology , Models, Biological , Muscle, Skeletal/physiology , Occupational Exposure , Weight-Bearing/physiology , Adult , Ankle Joint/physiology , Biomechanical Phenomena , Facility Design and Construction/instrumentation , Facility Design and Construction/methods , Hip Joint/physiology , Humans , Knee Joint/physiology , Male
16.
Appl Ergon ; 40(4): 781-9, 2009 Jul.
Article in English | MEDLINE | ID: mdl-18952203

ABSTRACT

Stilts are elevated tools that are frequently used by construction workers to raise workers 18-40 inches above the ground. The objective of this laboratory study was to evaluate the potential loss of postural stability associated with the use of stilts in various foot placements. Twenty construction workers with at least 1 year of experience in the use of stilts participated in this study. One Kistler force platform was used to collect kinetic data. Participants were tested under six-foot-placement conditions. These 6 experimental conditions were statically tested under all combinations of 3 levels of elevation: 0'' (no stilts), 24'' stilt height and 40'' stilt height. SAS mixed procedure was used to evaluate the effect of different experimental conditions. The results of the multivariate analysis of variance (MANOVA) and repeated measures of univariate analyses of variance (ANOVAs) demonstrated that stilt height, foot-placement direction, and foot-placement width all had significant effects on the whole-body postural stability. This study found that the higher the stilts were elevated, the greater the postural instability. A stance position with one foot placed forward of the other foot produced greater postural instability than a position with the feet parallel and directly beneath the body. This study found that placement of the feet parallel and directly beneath the body, with the feet positioned a half shoulder width apart, caused a greater amount of postural sway and instability than one and one-and-half shoulder width. This study also found that construction workers using the stilts could perceive the likely postural instability due to the change in foot placements.


Subject(s)
Foot/physiology , Occupational Health , Postural Balance , Accidental Falls/prevention & control , Adult , Analysis of Variance , Construction Materials , Humans , Male , Postural Balance/physiology , Self-Help Devices
17.
Ergonomics ; 51(12): 1814-29, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18608480

ABSTRACT

This study investigated kinematics and kinetic strategies and identified risk factors associated with gait on stilts. A six-camera motion-analysis system and two force platforms were used to test 20 construction workers for straight walking or turning, with or without carrying tools while wearing safety shoes or stilts at different heights. The results indicated that gait on stilts is characterised by increases in stride length, step width and the percentage of double support period, decreases in cadence, minimum foot clearance and a weaker heel-strike and push-off. Stilts place greater joint loadings on lower extremities to compensate for the added weight and limitation in joint mobility. Smaller foot clearances found for gait on stilts constitute an increased risk for tripping over obstacles. Workers may need to avoid prolonged use of stilts to alleviate stresses on the joints. This study was conducted to determine to what extent stilts alter the gait strategies and to explain the compensatory movements. Prior to this study, there has been little substantive research to evaluate the stresses and potential injuries associated with stilts.


Subject(s)
Biomechanical Phenomena , Equipment Design , Facility Design and Construction , Gait/physiology , Postural Balance/physiology , Adult , Humans , Male , Middle Aged , Occupational Exposure , Risk Factors
18.
J Safety Res ; 38(6): 617-25, 2007.
Article in English | MEDLINE | ID: mdl-18054593

ABSTRACT

PROBLEM: Work on aerial lift platforms exposes workers to fall hazards. The objective of this study was to identify the most common injury scenarios and determine current research gaps for addressing fall incidents associated with aerial lifts. METHODS: Three databases were searched: Census of Fatal Occupational Injuries (CFOI), NIOSH Fatality Assessment and Control Evaluation (FACE) reports, and OSHA Incident Investigation Records. RESULTS: The majority of falls/collapses/tipovers were within the height-category of 10-29 feet. Tipovers comprised 44-46% of boom-lift falls and 56-59% of scissor-lift falls. Constructing and repairing activities were most commonly associated with fall/collapse/tipover incidents. DISCUSSION: CFOI and OSHA/FACE show convergent data, suggesting similar scenarios for aerial lift tipovers. IMPACT ON INDUSTRY: The analysis provides the aerial lift industry information to prioritize their efforts on aerial lift design.


Subject(s)
Accidental Falls/mortality , Accidents, Occupational/mortality , Industry/statistics & numerical data , Workplace/statistics & numerical data , Accidental Falls/prevention & control , Accidents, Occupational/prevention & control , Accidents, Occupational/statistics & numerical data , Adult , Databases, Factual , Humans , Male , Middle Aged , Population Surveillance , United States/epidemiology , United States Occupational Safety and Health Administration
SELECTION OF CITATIONS
SEARCH DETAIL
...