Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
J Oral Microbiol ; 16(1): 2334588, 2024.
Article in English | MEDLINE | ID: mdl-38550659

ABSTRACT

Background: Epidemiological evidence has confirmed that periodontitis is an essential and independent risk factor of chronic obstructive pulmonary disease (COPD). Porphyromonas gingivalis, a major pathogen implicated in periodontitis, may make a vital contribution to COPD progression. However, the specific effects and molecular mechanism of the link between P. gingivalis and COPD are not clear. Methods and Results: A COPD rat model was constructed by smoke exposure combined intratracheal instillation of E. coli-LPS, then P. gingivalis was introduced into the oral cavity of COPD rats. This research observed that lower lung function, more severe alveolar damage and inflammation occurred in COPD rats with P. gingivalis group. Meanwhile, P. gingivalis/gingipains could colonize the lung tissues and be enriched in bronchoalveolar lavage fluid (BALF) of COPD rats with P. gingivalis group, along with alterations in lung microbiota. Proteomic analysis suggested that Hsp90α/MLKL-meditated necroptosis pathway was up-regulated in P. gingivalis-induced COPD aggravation, the detection of Hsp90α and MLKL in serum and lung tissue verified that Hsp90α/MLKL was up-regulated. Conclusion: These results indicate that P. gingivalis could emigrate into the lungs, alter lung microbiota and lead to aggravation of COPD, which Hsp90α/MLKL might participate in.

2.
Ying Yong Sheng Tai Xue Bao ; 23(9): 2459-66, 2012 Sep.
Article in Chinese | MEDLINE | ID: mdl-23286002

ABSTRACT

Long-term disturbance of human beings on secondary forest ecosystem would have profound impacts on belowground ecological processes, whereas the community structure and functional diversity of soil fauna would be sensitive to the changes of belowground ecological processes, with significance as an indicator of the changes. In this study, the method of hand-sorting was adopted to investigate the density of soil macrofaunal community in a secondary forest and the Pinus tabulaeformis, Larix kaempferi, Picea abie, and Picea asperata plantations of nearly 30 years old in Xiaolongshan forest area of western Qinling Mountains, and the PCA ordination and one-way ANOVA analysis were applied to analyze the community structure and trophic group composition of soil macrofauna in the five forest types. In the P. tabulaeformis and L. kaempferi plantations, the density of soil macrofaunal community was 3.0 and 2.1 times of that in the secondary forest, respectively, and the consumers/decomposers ratio of the community was obviously higher than that in the secondary forest. Among the plantations, P. tabulaeformis and L. kaempferi plantations had a significantly higher consumers/decomposers ratio of soil macrofaunal community than P. abies and P. asperata plantations. There was an obvious difference in community structure of soil macrofauna among the four plantations. The density of soil macrofaunal community in P. tabulaeformis and L. kaempferi plantations was 3.5 and 2.1 times higher than that in P. asperata plantation, respectively, whereas the group richness of soil macrofaunal community in P. tabulaeformis plantation was 1.5 times of that in P. abies and P. asperata plantations.


Subject(s)
Invertebrates/classification , Invertebrates/growth & development , Soil/chemistry , Trees/growth & development , Animals , China , Ecosystem , Larix/growth & development , Picea/growth & development , Pinus/growth & development , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...