Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(7): 3436-3443, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38306691

ABSTRACT

Developing efficient adsorbents for acetylene purification from multicomponent mixtures is of critical significance in the chemical industry, but the trade-off between regenerability and selectivity significantly restricts practical industrial applications. Here, we report ultramicroporous metal-organic frameworks with acetylene-affinity channels to enhance electrostatic interaction between C2H2 and frameworks for the efficient one-step purification of C2H2 from C2H2/CO2/C2H4 mixtures, in which the electrostatic interaction led to high regenerability. The obtained SNNU-277 exhibits significantly higher adsorption capacity for C2H2 than that for both C2H4 and CO2 at 298 K and 0.1 bar, while an ultrahigh selectivity of C2H2/C2H4 (100.6 at 298 K) and C2H2/CO2 (32.8 at 298 K) were achieved at 1 bar. Breakthrough experiments validated that SNNU-277 can efficiently separate C2H2 from C2H2/C2H4/CO2 mixtures. CO2 and C2H4 broke through the adsorption column at 4 and 14.8 min g-1, whereas C2H2 was detected until 177.6 min g-1 at 298 K. Theoretical calculations suggest that the framework is electrostatically compatible with C2H2 and electrostatically repels C2H4 and CO2 in the mixed components. This work highlights the importance of rational pore engineering for maximizing the electrostatic effect with the preferentially absorbed guest molecule for efficient multicomponent separation.

2.
Front Physiol ; 14: 1181510, 2023.
Article in English | MEDLINE | ID: mdl-37637145

ABSTRACT

Introduction: Coronary artery disease (CAD) is one of the most life-threatening cardiovascular emergencies with high mortality and morbidity. Increasing evidence has demonstrated that the degree of hypoxia is closely associated with the development and survival outcomes of CAD patients. However, the role of hypoxia in CAD has not been elucidated. Methods: Based on the GSE113079 microarray dataset and the hypoxia-associated gene collection, differential analysis, machine learning, and validation of the screened hub genes were carried out. Results: In this study, 54 differentially expressed hypoxia-related genes (DE-HRGs), and then 4 hub signature genes (ADM, PPFIA4, FAM162A, and TPBG) were identified based on microarray datasets GSE113079 which including of 93 CAD patients and 48 healthy controls and hypoxia-related gene set. Then, 4 hub genes were also validated in other three CAD related microarray datasets. Through GO and KEGG pathway enrichment analyses, we found three upregulated hub genes (ADM, PPFIA4, TPBG) were strongly correlated with differentially expressed metabolic genes and all the 4 hub genes were mainly enriched in many immune-related biological processes and pathways in CAD. Additionally, 10 immune cell types were found significantly different between the CAD and control groups, especially CD8 T cells, which were apparently essential in cardiovascular disease by immune cell infiltration analysis. Furthermore, we compared the expression of 4 hub genes in 15 cell subtypes in CAD coronary lesions and found that ADM, FAM162A and TPBG were all expressed at higher levels in endothelial cells by single-cell sequencing analysis. Discussion: The study identified four hypoxia genes associated with coronary heart disease. The findings provide more insights into the hypoxia landscape and, potentially, the therapeutic targets of CAD.

3.
Oncol Res ; 31(4): 569-590, 2023.
Article in English | MEDLINE | ID: mdl-37415742

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common fatal cancer worldwide, patients with HCC have a high mortality rate and poor prognosis. PANoptosis is a novel discovery of programmed cell death associated with cancer development. However, the role of PANoptosis in HCC remains obscure. In this study, we enrolled 274 PANoptosis-related genes (PANRGs) and screened 8 genes to set up a prognostic model. A previous scoring system calculated PANscore was utilized to quantify the individual risk level of each HCC patient, and the reliability of the prognostic model has been validated in an external cohort. Nomogram constructed with PANscore and clinical characteristics were used to optimize individualized treatment for each patient. Single-cell analysis revealed a PANoptosis model associated with tumor immune cell infiltration, particularly natural killer (NK) cells. Further exploration of hub genes and assessment of the prognostic role of these 4 hub genes in HCC by quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). In conclusion, we evaluated a PANoptosis-based prognostic model as a potential prognostic biomarker for HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Reproducibility of Results , Tumor Microenvironment/genetics , Liver Neoplasms/genetics , Apoptosis , Prognosis
4.
Nanoscale ; 14(48): 18200-18208, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36465000

ABSTRACT

It is well known that the introduction of exposed fluorine (F) sites into metal-organic frameworks (MOFs) can effectively promote acetylene (C2H2) adsorption via C-H⋯F hydrogen bonds. However, such super strong hydrogen bonding interactions usually lead to very high acetylene adsorption enthalpy and thus require more energy during the adsorbent regeneration process. As the same group elements, chlorine (Cl), bromine (Br) and iodine (I) also can act as hydrogen bond acceptors but with relatively weak forces. So, it is speculated that the decoration of Cl, Br or I sites on the pore surface of MOF adsorbents may enhance acetylene adsorption but with lower energy consumption. Herein, ultra-microporous MOFs constructed by Cu4X4 (X = Cl, Br, I) motifs and 1,2,4-triazolate linkers, namely, [Cu8X4(TRZ)4]n (TRZ = 3,5-diethyl-1,2,4-triazole or detrz for SNNU-313-X, and 3,5-dipropyl-1,2,4-triazole or dptrz for SNNU-314-X), provide an ideal platform to investigate the effect of C-H⋯X (X = Cl, Br, I) hydrogen bonding on C2H2 adsorption and purification performance. Benefiting from the small pore size and pore environment, the C2H2 uptake and separation properties of this series of MOFs are systematically regulated. Detailed gas adsorption results show that with the same organic linker, the C2H2 uptake and separation (C2H2/C2H4 and C2H2/CO2) performance decrease clearly with the electronegativity of halogen ions (SNNU-313-Cl > SNNU-313-Br > SNNU-313-I). With the same halogen ion, the gas adsorption decreases with the bulk of decorated alkyl groups (SNNU-313-Cl > SNNU-314-Cl). Remarkably, SNNU-313/314 series MOF adsorbents exhibit moderate C2H2 uptake capacity and high separation ability, but the C2H2 adsorption enthalpies are much lower than those of MOF materials with exposed F sites. Dynamic fixed-bed column breakthrough experiments and Grand Canonical Monte Carlo (GCMC) simulations further indicate the critical effects of halogen hydrogen bonds on acetylene adsorption and separation. Overall, this work demonstrated an effective regulation of acetylene adsorption and separation by rational C-H⋯X hydrogen bonding, which may provide a new route for the exploration of energy-efficient acetylene adsorbent materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...