Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Oncol ; 2022: 5504173, 2022.
Article in English | MEDLINE | ID: mdl-35847355

ABSTRACT

Background: Tyrosine metabolism pathway-related genes were related to prostate cancer progression, which may be used as potential prognostic markers. Aims: To dissect the dysregulation of tyrosine metabolism in prostate cancer and build a prognostic signature based on tyrosine metabolism-related genes for prostate cancer. Materials and Method. Cross-platform gene expression data of prostate cancer cohorts were collected from both The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Based on the expression of tyrosine metabolism-related enzymes (TMREs), an unsupervised consensus clustering method was used to classify prostate cancer patients into different molecular subtypes. We employed the least absolute shrinkage and selection operator (LASSO) Cox regression analysis to evaluate prognostic characteristics based on TMREs to obtain a prognostic effect. The nomogram model was established and used to synthesize molecular subtypes, prognostic characteristics, and clinicopathological features. Kaplan-Meier plots and logrank analysis were used to clarify survival differences between subtypes. Results: Based on the hierarchical clustering method and the expression profiles of TMREs, prostate cancer samples were assigned into two subgroups (S1, subgroup 1; S2, subgroup 2), and the Kaplan-Meier plot and logrank analysis showed distinct survival outcomes between S1 and S2 subgroups. We further established a four-gene-based prognostic signature, and both in-group testing dataset and out-group testing dataset indicated the robustness of this model. By combining the four gene-based signatures and clinicopathological features, the nomogram model achieved better survival outcomes than any single classifier. Interestingly, we found that immune-related pathways were significantly concentrated on S1-upregulated genes, and the abundance of memory B cells, CD4+ resting memory T cells, M0 macrophages, resting dendritic cells, and resting mast cells were significantly different between S1 and S2 subgroups. Conclusions: Our results indicate the prognostic value of genes related to tyrosine metabolism in prostate cancer and provide inspiration for treatment and prevention strategies.

2.
Protein Sci ; 31(6): e4331, 2022 06.
Article in English | MEDLINE | ID: mdl-35634783

ABSTRACT

ABCB1, also known as P-glycoprotein, is an essential component of many physiological barriers and extrudes a variety of hydrophobic chemicals out of the cell. Structures of ABCB1 provided insights into the structural changes that occur upon ATP binding and the characteristic architecture of the substrate binding site. Yet, the structure-function relationship between substrate binding and transporting still remains largely obscured because there is no robust method for accurately measuring substrate binding constants. The methods currently used cannot identify whether the bound substrates are located in the inner chamber of the molecule in the transmembrane region or not because of the low spatial resolution. Here, we report a system for measuring the affinity of substrate binding to the Cyanidioschyzon merolae ABCB1 (CmABCB1) using site-specific tryptophan (Trp) fluorescence quenching. We designed a CmABCB1 mutant with an extrinsic Trp residue introduced into the inner chamber. Trp fluorescence was quenched by three substrates and one inhibitor, including rhodamine 6G, in a saturable fashion, allowing for accurate estimation of the dissociation constant (KD ) for each molecule. The KD for rhodamine 6G is similar to that determined using a reciprocal fluorescence quenching assay using rhodamine 6G fluorescence, suggesting that Trp fluorescence of the mutant was quenched by the interaction between the extrinsic Trp and substrates bound in the inner chamber. Structural comparison of the ABCB1 structures suggests that the system presented in this study could be ideal method of choice to determine the substrate binding affinities of compounds bound to the chamber of mammalian ABCB1.


Subject(s)
Rhodophyta , Tryptophan , ATP Binding Cassette Transporter, Subfamily B/chemistry , ATP Binding Cassette Transporter, Subfamily B/genetics , Animals , Binding Sites , Mammals , Spectrometry, Fluorescence , Tryptophan/chemistry
3.
IUCrJ ; 9(Pt 1): 134-145, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35059217

ABSTRACT

CmABCB1 is a Cyanidioschyzon merolae homolog of human ABCB1, a well known ATP-binding cassette (ABC) transporter responsible for multi-drug resistance in various cancers. Three-dimensional structures of ABCB1 homologs have revealed the snapshots of inward- and outward-facing states of the transporters in action. However, sufficient information to establish the sequential movements of the open-close cycles of the alternating-access model is still lacking. Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has proven its worth in determining novel structures and recording sequential conformational changes of proteins at room temperature, especially for medically important membrane proteins, but it has never been applied to ABC transporters. In this study, 7.7 mono-acyl-glycerol with cholesterol as the host lipid was used and obtained well diffracting microcrystals of the 130 kDa CmABCB1 dimer. Successful SFX experiments were performed by adjusting the viscosity of the crystal suspension of the sponge phase with hy-droxy-propyl methyl-cellulose and using the high-viscosity sample injector for data collection at the SACLA beamline. An outward-facing structure of CmABCB1 at a maximum resolution of 2.22 Šis reported, determined by SFX experiments with crystals formed in the lipidic cubic phase (LCP-SFX), which has never been applied to ABC transporters. In the type I crystal, CmABCB1 dimers interact with adjacent molecules via not only the nucleotide-binding domains but also the transmembrane domains (TMDs); such an interaction was not observed in the previous type II crystal. Although most parts of the structure are similar to those in the previous type II structure, the substrate-exit region of the TMD adopts a different configuration in the type I structure. This difference between the two types of structures reflects the flexibility of the substrate-exit region of CmABCB1, which might be essential for the smooth release of various substrates from the transporter.

4.
Nat Struct Mol Biol ; 28(12): 964-971, 2021 12.
Article in English | MEDLINE | ID: mdl-34824462

ABSTRACT

The AAA-ATPase VCP/p97/Cdc48 unfolds proteins by threading them through its central pore, but how substrates are recognized and inserted into the pore in diverse pathways has remained controversial. Here, we show that p97, with its adapter p37, binds an internal recognition site (IRS) within inhibitor-3 (I3) and then threads a peptide loop into its channel to strip I3 off protein phosphatase-1 (PP1). Of note, the IRS is adjacent to the prime interaction site of I3 to PP1, and IRS mutations block I3 processing both in vitro and in cells. In contrast, amino- and carboxy-terminal regions of I3 are not required, and even circularization of I3 does not prevent I3 processing. This was confirmed by an in vitro Förster resonance energy transfer assay that allowed kinetic analysis of the reaction. Thus, our data uncover how PP1 is released from its inhibitory partner for activation and demonstrate a remarkable plasticity in substrate threading by p97.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Protein Phosphatase 1/metabolism , Valosin Containing Protein/metabolism , Animals , Binding Sites/genetics , Catalytic Domain/genetics , Cell Line , Fluorescence Resonance Energy Transfer , HEK293 Cells , Humans , Protein Binding/genetics , Protein Unfolding , Sf9 Cells
5.
Sci Adv ; 7(27)2021 06.
Article in English | MEDLINE | ID: mdl-34193424

ABSTRACT

Centromeres are epigenetically determined chromosomal loci that seed kinetochore assembly to promote chromosome segregation during cell division. CENP-A, a centromere-specific histone H3 variant, establishes the foundations for centromere epigenetic memory and kinetochore assembly. It recruits the constitutive centromere-associated network (CCAN), which in turn assembles the microtubule-binding interface. How the specific organization of centromeric chromatin relates to kinetochore assembly and to centromere identity through cell division remains conjectural. Here, we break new ground by reconstituting a functional full-length version of CENP-C, the largest human CCAN subunit and a blueprint of kinetochore assembly. We show that full-length CENP-C, a dimer, binds stably to two nucleosomes and permits further assembly of all other kinetochore subunits in vitro with relative ratios closely matching those of endogenous human kinetochores. Our results imply that human kinetochores emerge from clustering multiple copies of a fundamental module and may have important implications for transgenerational inheritance of centromeric chromatin.


Subject(s)
Histones , Kinetochores , Centromere/metabolism , Centromere Protein A/genetics , Centromere Protein A/metabolism , Humans , Kinetochores/metabolism , Nucleosomes
6.
Life Sci Alliance ; 3(11)2020 11.
Article in English | MEDLINE | ID: mdl-32826290

ABSTRACT

Pch2 is a meiosis-specific AAA+ protein that controls several important chromosomal processes. We previously demonstrated that Orc1, a subunit of the ORC, functionally interacts with budding yeast Pch2. The ORC (Orc1-6) AAA+ complex loads the AAA+ MCM helicase to origins of replication, but whether and how ORC collaborates with Pch2 remains unclear. Here, we show that a Pch2 hexamer directly associates with ORC during the meiotic G2/prophase. Biochemical analysis suggests that Pch2 uses its non-enzymatic NH2-terminal domain and AAA+ core and likely engages the interface of ORC that also binds to Cdc6, a factor crucial for ORC-MCM binding. Canonical ORC function requires association with origins, but we show here that despite causing efficient removal of Orc1 from origins, nuclear depletion of Orc2 and Orc5 does not trigger Pch2/Orc1-like meiotic phenotypes. This suggests that the function for Orc1/Pch2 in meiosis can be executed without efficient association of ORC with origins of replication. In conclusion, we uncover distinct functionalities for Orc1/ORC that drive the establishment of a non-canonical, meiosis-specific AAA+ assembly with Pch2.


Subject(s)
Meiosis/physiology , Nuclear Proteins/metabolism , Origin Recognition Complex/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Cell Cycle/physiology , Cell Cycle Proteins/genetics , DNA Helicases/genetics , DNA Replication/genetics , G2 Phase Cell Cycle Checkpoints/physiology , Meiosis/genetics , Nuclear Proteins/genetics , Nuclear Proteins/physiology , Origin Recognition Complex/physiology , Prophase/physiology , Protein Binding/genetics , Replication Origin/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/physiology , Saccharomycetales/genetics , Saccharomycetales/metabolism
7.
Mol Cell ; 79(1): 99-114.e9, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32445620

ABSTRACT

Structural maintenance of chromosomes (SMC) complexes are essential for genome organization from bacteria to humans, but their mechanisms of action remain poorly understood. Here, we characterize human SMC complexes condensin I and II and unveil the architecture of the human condensin II complex, revealing two putative DNA-entrapment sites. Using single-molecule imaging, we demonstrate that both condensin I and II exhibit ATP-dependent motor activity and promote extensive and reversible compaction of double-stranded DNA. Nucleosomes are incorporated into DNA loops during compaction without being displaced from the DNA, indicating that condensin complexes can readily act upon nucleosome-bound DNA molecules. These observations shed light on critical processes involved in genome organization in human cells.


Subject(s)
Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA/chemistry , DNA/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Nucleosomes/metabolism , Adenosine Triphosphatases/genetics , DNA-Binding Proteins/genetics , Humans , Models, Molecular , Multiprotein Complexes/genetics , Protein Binding , Protein Conformation , Single Molecule Imaging/methods
8.
Nat Commun ; 10(1): 4046, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31492860

ABSTRACT

Nucleosomes containing the histone H3 variant CENP-A are the epigenetic mark of centromeres, the kinetochore assembly sites required for chromosome segregation. HJURP is the CENP-A chaperone, which associates with Mis18α, Mis18ß, and M18BP1 to target centromeres and deposit new CENP-A. How these proteins interact to promote CENP-A deposition remains poorly understood. Here we show that two repeats in human HJURP proposed to be functionally distinct are in fact interchangeable and bind concomitantly to the 4:2:2 Mis18α:Mis18ß:M18BP1 complex without dissociating it. HJURP binds CENP-A:H4 dimers, and therefore assembly of CENP-A:H4 tetramers must be performed by two Mis18αß:M18BP1:HJURP complexes, or by the same complex in consecutive rounds. The Mis18α N-terminal tails blockade two identical HJURP-repeat binding sites near the Mis18αß C-terminal helices. These were identified by photo-cross-linking experiments and mutated to separate Mis18 from HJURP centromere recruitment. Our results identify molecular underpinnings of eukaryotic chromosome inheritance and shed light on how centromeres license CENP-A deposition.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Centromere Protein A/metabolism , Centromere/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Histones/metabolism , Molecular Chaperones/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Sequence , Binding Sites , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Centromere Protein A/chemistry , Centromere Protein A/genetics , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , HeLa Cells , Histones/chemistry , Humans , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Protein Binding , RNA Interference , Sequence Homology, Amino Acid
9.
Sci Technol Adv Mater ; 20(1): 465-496, 2019.
Article in English | MEDLINE | ID: mdl-31164953

ABSTRACT

Atomic layer deposition (ALD) is an ultra-thin film deposition technique that has found many applications owing to its distinct abilities. They include uniform deposition of conformal films with controllable thickness, even on complex three-dimensional surfaces, and can improve the efficiency of electronic devices. This technology has attracted significant interest both for fundamental understanding how the new functional materials can be synthesized by ALD and for numerous practical applications, particularly in advanced nanopatterning for microelectronics, energy storage systems, desalinations, catalysis and medical fields. This review introduces the progress made in ALD, both for computational and experimental methodologies, and provides an outlook of this emerging technology in comparison with other film deposition methods. It discusses experimental approaches and factors that affect the deposition and presents simulation methods, such as molecular dynamics and computational fluid dynamics, which help determine and predict effective ways to optimize ALD processes, hence enabling the reduction in cost, energy waste and adverse environmental impacts. Specific examples are chosen to illustrate the progress in ALD processes and applications that showed a considerable impact on other technologies.

10.
Anal Chem ; 90(18): 10990-10999, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30074391

ABSTRACT

Chemical cross-linking combined with mass spectrometry (MS) is a powerful approach to identify and map protein-protein interactions. Its applications support computational modeling of three-dimensional structures and complement classical structural methodologies such as X-ray crystallography, NMR spectroscopy, and electron microscopy (EM). A plethora of cross-linkers, MS methods, and data analysis programs have been developed, but due to their methodological complexity application is currently reserved for specialized mass spectrometry laboratories. Here, we present a simplified single-step purification protocol that results in improved identifications of cross-linked peptides. We describe an easy-to-follow pipeline that combines the MS-cleavable cross-linker DSBU (disuccinimidyl dibutyric urea), a Q-Exactive mass spectrometer, and the dedicated software MeroX for data analysis to make cross-linking MS accessible to structural biology and biochemistry laboratories. In experiments focusing on kinetochore subcomplexes containing 4-10 subunits (so-called KMN network), one-step peptide purification, and enrichment by size-exclusion chromatography yielded identification of 135-228 non-redundant cross-links (577-820 cross-linked peptides) from each experiment. Notably, half of the non-redundant cross-links identified were not lysine-lysine cross-links and involved side chains with hydroxy groups. The new pipeline has a comparable potential toward the identification of protein-protein interactions as previously used pipelines based on isotope-labeled cross-linkers. A newly identified cross-link enabled us to improve our 3D-model of the KMN, emphasizing the power of cross-linking data for evaluation of low-resolution EM maps. In sum, our optimized experimental scheme represents a viable shortcut toward obtaining reliable cross-link data sets.

11.
IUCrJ ; 4(Pt 5): 639-647, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28989719

ABSTRACT

Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) holds enormous potential for the structure determination of proteins for which it is difficult to produce large and high-quality crystals. SFX has been applied to various systems, but rarely to proteins that have previously unknown structures. Consequently, the majority of previously obtained SFX structures have been solved by the molecular replacement method. To facilitate protein structure determination by SFX, it is essential to establish phasing methods that work efficiently for SFX. Here, selenomethionine derivatization and mercury soaking have been investigated for SFX experiments using the high-energy XFEL at the SPring-8 Angstrom Compact Free-Electron Laser (SACLA), Hyogo, Japan. Three successful cases are reported of single-wavelength anomalous diffraction (SAD) phasing using X-rays of less than 1 Šwavelength with reasonable numbers of diffraction patterns (13 000, 60 000 and 11 000). It is demonstrated that the combination of high-energy X-rays from an XFEL and commonly used heavy-atom incorporation techniques will enable routine de novo structural determination of biomacromolecules.

12.
Elife ; 62017 01 06.
Article in English | MEDLINE | ID: mdl-28059702

ABSTRACT

Centromeres are unique chromosomal loci that promote the assembly of kinetochores, macromolecular complexes that bind spindle microtubules during mitosis. In most organisms, centromeres lack defined genetic features. Rather, they are specified epigenetically by a centromere-specific histone H3 variant, CENP-A. The Mis18 complex, comprising the Mis18α:Mis18ß subcomplex and M18BP1, is crucial for CENP-A homeostasis. It recruits the CENP-A-specific chaperone HJURP to centromeres and primes it for CENP-A loading. We report here that a specific arrangement of Yippee domains in a human Mis18α:Mis18ß 4:2 hexamer binds two copies of M18BP1 through M18BP1's 140 N-terminal residues. Phosphorylation by Cyclin-dependent kinase 1 (CDK1) at two conserved sites in this region destabilizes binding to Mis18α:Mis18ß, limiting complex formation to the G1 phase of the cell cycle. Using an improved viral 2A peptide co-expression strategy, we demonstrate that CDK1 controls Mis18 complex recruitment to centromeres by regulating oligomerization of M18BP1 through the Mis18α:Mis18ß scaffold.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , CDC2 Protein Kinase/metabolism , Centromere Protein A/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Protein Multimerization , Cell Cycle Proteins , Centromere/metabolism , Humans , Phosphorylation , Protein Binding , Protein Processing, Post-Translational
13.
Nature ; 537(7619): 249-253, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27580032

ABSTRACT

Chromosomes are carriers of genetic material and their accurate transfer from a mother cell to its two daughters during cell division is of paramount importance for life. Kinetochores are crucial for this process, as they connect chromosomes with microtubules in the mitotic spindle. Kinetochores are multi-subunit complexes that assemble on specialized chromatin domains, the centromeres, that are able to enrich nucleosomes containing the histone H3 variant centromeric protein A (CENP-A). A group of several additional CENPs, collectively known as constitutive centromere associated network (CCAN), establish the inner kinetochore, whereas a ten-subunit assembly known as the KMN network creates a microtubule-binding site in the outer kinetochore. Interactions between CENP-A and two CCAN subunits, CENP-C and CENP-N, have been previously described, but a comprehensive understanding of CCAN organization and of how it contributes to the selective recognition of CENP-A has been missing. Here we use biochemical reconstitution to unveil fundamental principles of kinetochore organization and function. We show that cooperative interactions of a seven-subunit CCAN subcomplex, the CHIKMLN complex, determine binding selectivity for CENP-A over H3-nucleosomes. The CENP-A:CHIKMLN complex binds directly to the KMN network, resulting in a 21-subunit complex that forms a minimal high-affinity linkage between CENP-A nucleosomes and microtubules in vitro. This structural module is related to fungal point kinetochores, which bind a single microtubule. Its convolution with multiple CENP-A proteins may give rise to the regional kinetochores of higher eukaryotes, which bind multiple microtubules. Biochemical reconstitution paves the way for mechanistic and quantitative analyses of kinetochores.


Subject(s)
Kinetochores/chemistry , Kinetochores/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Autoantigens/metabolism , Centromere/chemistry , Centromere/genetics , Centromere/metabolism , Centromere Protein A , Chromosomal Proteins, Non-Histone/metabolism , Humans , Microtubules/metabolism , Nucleosomes/chemistry , Nucleosomes/genetics , Nucleosomes/metabolism , Protein Subunits/chemistry , Protein Subunits/metabolism , Spindle Apparatus
14.
Sci Rep ; 5: 14017, 2015 Sep 11.
Article in English | MEDLINE | ID: mdl-26360462

ABSTRACT

Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) holds great potential for structure determination of challenging proteins that are not amenable to producing large well diffracting crystals. Efficient de novo phasing methods are highly demanding and as such most SFX structures have been determined by molecular replacement methods. Here we employed single isomorphous replacement with anomalous scattering (SIRAS) for phasing and demonstrate successful application to SFX de novo phasing. Only about 20,000 patterns in total were needed for SIRAS phasing while single wavelength anomalous dispersion (SAD) phasing was unsuccessful with more than 80,000 patterns of derivative crystals. We employed high energy X-rays from SACLA (12.6 keV) to take advantage of the large anomalous enhancement near the LIII absorption edge of Hg, which is one of the most widely used heavy atoms for phasing in conventional protein crystallography. Hard XFEL is of benefit for de novo phasing in the use of routinely used heavy atoms and high resolution data collection.


Subject(s)
Crystallography, X-Ray , Models, Molecular , Proteins/chemistry
15.
Nat Methods ; 12(1): 61-3, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25384243

ABSTRACT

Serial femtosecond X-ray crystallography (SFX) has revolutionized atomic-resolution structural investigation by expanding applicability to micrometer-sized protein crystals, even at room temperature, and by enabling dynamics studies. However, reliable crystal-carrying media for SFX are lacking. Here we introduce a grease-matrix carrier for protein microcrystals and obtain the structures of lysozyme, glucose isomerase, thaumatin and fatty acid-binding protein type 3 under ambient conditions at a resolution of or finer than 2 Å.


Subject(s)
Crystallography, X-Ray/methods , Lubricants , Proteins/chemistry , Aldose-Ketose Isomerases/chemistry , Crystallization , Fatty Acid Binding Protein 3 , Fatty Acid-Binding Proteins/chemistry , Lasers , Mineral Oil , Muramidase/chemistry , Plant Proteins/chemistry
16.
Nat Struct Mol Biol ; 20(8): 987-93, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23812376

ABSTRACT

Appropriate targeting of matrix proteins to peroxisomes is mainly directed by two types of peroxisomal targeting signals, PTS1 and PTS2. Although the basis of PTS1 recognition has been revealed by structural studies, that of PTS2 recognition remains elusive. Here we present the crystal structure of a heterotrimeric PTS2-recognition complex from Saccharomyces cerevisiae, containing Pex7p, the C-terminal region of Pex21p and the PTS2 of the peroxisomal 3-ketoacyl-CoA thiolase. Pex7p forms a ß-propeller structure and provides a platform for cooperative interactions with both the amphipathic PTS2 helix and Pex21p. The C-terminal region of Pex21p directly covers the hydrophobic surfaces of both Pex7p and PTS2, and the resulting hydrophobic core is the primary determinant of stable complex formation. Together with in vivo and in vitro functional assays of Pex7p and Pex21p variants, our findings reveal the molecular mechanism of PTS2 recognition.


Subject(s)
Carrier Proteins/chemistry , Models, Molecular , Multiprotein Complexes/chemistry , Protein Conformation , Receptors, Cytoplasmic and Nuclear/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Carrier Proteins/metabolism , Crystallization , Multiprotein Complexes/metabolism , Peroxisomal Targeting Signal 2 Receptor , Receptors, Cytoplasmic and Nuclear/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism
17.
Article in English | MEDLINE | ID: mdl-22505404

ABSTRACT

In eukaryotes, multiprotein complexes termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2) function as major regulators of cell growth, metabolism and ageing. The C-terminal domain of the Saccharomyces cerevisiae TORC2 component Avo1 is required for plasma-membrane localization of TORC2 and is essential for yeast viability. X-ray crystal structures of the C-terminal domain of Avo1 and of its human orthologue Sin1 have been determined. The structures show that the C-termini of Avo1 and Sin1 both have the pleckstrin homology (PH) domain fold. Comparison with known PH-domain structures suggests a putative binding site for phosphoinositides.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Carrier Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/chemistry , Amino Acid Sequence , Humans , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Protein Structure, Tertiary , Protein Subunits/chemistry , Sequence Alignment , Structural Homology, Protein , Transcription Factors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...