Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Comp Physiol B ; 194(2): 191-202, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38522042

ABSTRACT

Disuse-induced muscular atrophy is frequently accompanied by iron overload. Hibernating animals are a natural animal model for resistance to disuse muscle atrophy. In this paper, we explored changes in skeletal muscle iron content of Daurian ground squirrels (Spermophilus dauricus) during different periods of hibernation as well as the regulatory mechanisms involved. The results revealed that compared with the summer active group (SA), iron content in the soleus muscle (SOL) decreased (- 65%) in the torpor group (TOR), but returned to normal levels in the inter-bout arousal (IBA); splenic iron content increased in the TOR group (vs. SA, + 67%), decreased in the IBA group (vs. TOR, - 37%). Expression of serum hepcidin decreased in the TOR group (vs. SA, - 22%) and returned to normal levels in the IBA groups; serum ferritin increased in the TOR group (vs. SA, + 31%), then recovered in the IBA groups. Soleus muscle transferrin receptor 1 (TfR1) expression increased in the TOR group (vs. SA, + 83%), decreased in the IBA group (vs. TOR, - 30%); ferroportin 1 increased in the IBA group (vs. SA, + 55%); ferritin increased in the IBA group (vs. SA, + 42%). No significant differences in extensor digitorum longus in iron content or iron metabolism-related protein expression were observed among the groups. Significantly, all increased or decreased indicators in this study returned to normal levels after the post-hibernation group, showing remarkable plasticity. In summary, avoiding iron overload may be a potential mechanism for hibernating Daurian ground squirrels to avoid disuse induced muscular atrophy. In addition, the different skeletal muscle types exhibited unique strategies for regulating iron homeostasis.


Subject(s)
Antigens, CD , Ferritins , Hepcidins , Hibernation , Homeostasis , Iron , Muscle, Skeletal , Muscular Atrophy , Receptors, Transferrin , Sciuridae , Animals , Sciuridae/physiology , Hibernation/physiology , Iron/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Hepcidins/metabolism , Receptors, Transferrin/metabolism , Ferritins/metabolism , Male , Spleen/metabolism , Cation Transport Proteins/metabolism
2.
J Appl Physiol (1985) ; 135(5): 1082-1091, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37795532

ABSTRACT

Skeletal muscle disuse atrophy can cause degenerative changes in neuromuscular junction morphology. Although Daurian ground squirrels (Spermophilus dauricus) are a natural anti-disuse animal model for studying muscle atrophy during hibernation, little is known about the morphological and regulatory mechanisms of their neuromuscular junctions. Here, we found that morphological indices of the soleus muscle were significantly lower during hibernation (torpor and interbout arousal) compared with pre-hibernation but recovered during post-hibernation. In the extensor digitorum longus muscle, neuromuscular junction morphology did not change significantly during hibernation. Agrin-Lrp4-MuSK is a key pathway for the formation and maintenance of the neuromuscular junction. Our results showed that low-density lipoprotein receptor-associated protein 4 (Lrp4) expression in the soleus (slow muscle) decreased by 46.2% in the interbout arousal group compared with the pre-hibernation group (P = 0.019), with recovery in the post-hibernation group. Compared with the pre-hibernation group, agrin expression in the extensor digitorum longus (fast muscle) increased by 67.0% in the interbout arousal group (P = 0.016). In conclusion, periodic up-regulation in agrin expression during interbout arousal may be involved in the maintenance of neuromuscular junction morphology in the extensor digitorum longus muscle during hibernation. The degenerative changes in neuromuscular junction morphology and the periodic decrease in Lrp4 protein expression in the soleus during hibernation, these changes recovered to the pre-hibernation levels in the post-hibernation group, exhibiting significant plasticity. This plasticity may be one of the important mechanisms for resisting disuse atrophy in hibernating animals.NEW & NOTEWORTHY This study is the first to explore the neuromuscular junction morphology of slow- and fast-twitch muscles in Daurian ground squirrels during different periods of hibernation. Results showed that the neuromuscular junction maintained stable morphology in the extensor digitorum longus muscle. The degenerative changes in neuromuscular junction morphology and the periodic decrease in Lrp4 protein expression in the soleus muscle during hibernation recovered in post-hibernation, exhibiting significant plasticity.


Subject(s)
Hibernation , Muscular Disorders, Atrophic , Animals , Sciuridae/metabolism , Agrin/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Neuromuscular Junction , Transcription Factors/metabolism , Muscular Disorders, Atrophic/pathology , Hibernation/physiology
3.
Cells ; 12(7)2023 04 03.
Article in English | MEDLINE | ID: mdl-37048150

ABSTRACT

Disuse atrophy of skeletal muscle is associated with a severe imbalance in cellular Ca2+ homeostasis and marked increase in nuclear apoptosis. Nuclear Ca2+ is involved in the regulation of cellular Ca2+ homeostasis. However, it remains unclear whether nuclear Ca2+ levels change under skeletal muscle disuse conditions, and whether changes in nuclear Ca2+ levels are associated with nuclear apoptosis. In this study, changes in Ca2+ levels, Ca2+ transporters, and regulatory factors in the nucleus of hindlimb unloaded rat soleus muscle were examined to investigate the effects of disuse on nuclear Ca2+ homeostasis and apoptosis. Results showed that, after hindlimb unloading, the nuclear envelope Ca2+ levels ([Ca2+]NE) and nucleocytoplasmic Ca2+ levels ([Ca2+]NC) increased by 78% (p < 0.01) and 106% (p < 0.01), respectively. The levels of Ca2+-ATPase type 2 (Ca2+-ATPase2), Ryanodine receptor 1 (RyR1), Inositol 1,4,5-tetrakisphosphate receptor 1 (IP3R1), Cyclic ADP ribose hydrolase (CD38) and Inositol 1,4,5-tetrakisphosphate (IP3) increased by 470% (p < 0.001), 94% (p < 0.05), 170% (p < 0.001), 640% (p < 0.001) and 12% (p < 0.05), respectively, and the levels of Na+/Ca2+ exchanger 3 (NCX3), Ca2+/calmodulin dependent protein kinase II (CaMK II) and Protein kinase A (PKA) decreased by 54% (p < 0.001), 33% (p < 0.05) and 5% (p > 0.05), respectively. In addition, DNase X is mainly localized in the myonucleus and its activity is elevated after hindlimb unloading. Overall, our results suggest that enhanced Ca2+ uptake from cytoplasm is involved in the increase in [Ca2+]NE after hindlimb unloading. Moreover, the increase in [Ca2+]NC is attributed to increased Ca2+ release into nucleocytoplasm and weakened Ca2+ uptake from nucleocytoplasm. DNase X is activated due to elevated [Ca2+]NC, leading to DNA fragmentation in myonucleus, ultimately initiating myonuclear apoptosis. Nucleocytoplasmic Ca2+ overload may contribute to the increased incidence of myonuclear apoptosis in disused skeletal muscle.


Subject(s)
Hindlimb Suspension , Muscular Atrophy , Rats , Animals , Hindlimb Suspension/physiology , Muscular Atrophy/pathology , Muscle, Skeletal/metabolism , DNA Damage , Deoxyribonucleases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...