Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Gastrointest Endosc ; 98(4): 534-542.e7, 2023 10.
Article in English | MEDLINE | ID: mdl-37207844

ABSTRACT

BACKGROUND AND AIMS: Stenosis after esophageal endoscopic submucosal dissection (ESD) has a high incidence, and muscular injury is an important risk factor for esophageal stenosis. Hence, this study aimed to classify muscular injury degrees and investigate their association with postoperative stenosis. METHODS: This retrospective study included 1033 patients with esophageal mucosal lesions treated with ESD between August 2015 and March 2021. Demographic and clinical parameters were analyzed, and stenosis risk factors were identified using multivariate logistic regression. A novel muscular injury classification system was proposed and used to investigate the association between different muscular injury degrees and postoperative stenosis. Finally, a scoring system was established to predict muscular injury. RESULTS: Of 1033 patients, 118 (11.4%) had esophageal stenosis. The multivariate analysis demonstrated that the history of endoscopic esophageal treatment, circumferential range, and muscular injury were significant risk factors for esophageal stenosis. Patients with type II muscular injuries tended to develop complex stenosis (n = 13 [36.1%], P < .05), and type II muscular injuries were more likely to predispose patients to severe stenosis than type I (73.3% and 92.3%, respectively). The scoring system showed that patients with high scores (3-6) were more likely to have muscular injury. The score model presented good discriminatory power in the internal validation (area under the receiver-operating characteristic curve, .706; 95% confidence interval, .645-.767) and goodness-of-fit in the Hosmer-Lemeshow test (P = .865). CONCLUSIONS: Muscular injury was an independent risk factor for esophageal stenosis. The scoring system demonstrated good performance in predicting muscular injury during ESD.


Subject(s)
Carcinoma, Squamous Cell , Endoscopic Mucosal Resection , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Esophageal Stenosis , Humans , Esophageal Stenosis/epidemiology , Esophageal Stenosis/etiology , Constriction, Pathologic , Endoscopic Mucosal Resection/adverse effects , Retrospective Studies , Esophageal Neoplasms/surgery , Risk Factors
3.
Math Biosci Eng ; 20(5): 9443-9469, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-37161251

ABSTRACT

Water pollution prevention and control of the Xiang River has become an issue of great concern to China's central and local governments. To further analyze the effects of central and local governmental policies on water pollution prevention and control for the Xiang River, this study performs a big data analysis of 16 water quality parameters from 42 sections of the mainstream and major tributaries of the Xiang River, Hunan Province, China from 2005 to 2016. This study uses an evidential reasoning-based integrated assessment of water quality and principal component analysis, identifying the spatiotemporal changes in the primary pollutants of the Xiang River and exploring the correlations between potentially relevant factors. The analysis showed that a series of environmental protection policies implemented by Hunan Province since 2008 have had a significant and targeted impact on annual water quality pollutants in the mainstream and tributaries. In addition, regional industrial structures and management policies also have had a significant impact on regional water quality. The results showed that, when examining the changes in water quality and the effects of pollution control policies, a big data analysis of water quality monitoring results can accurately reveal the detailed relationships between management policies and water quality changes in the Xiang River. Compared with policy impact evaluation methods primarily based on econometric models, such a big data analysis has its own advantages and disadvantages, effectively complementing the traditional methods of policy impact evaluations. Policy impact evaluations based on big data analysis can further improve the level of refined management by governments and provide a more specific and targeted reference for improving water pollution management policies for the Xiang River.

4.
Gastrointest Endosc ; 98(4): 543-551.e1, 2023 10.
Article in English | MEDLINE | ID: mdl-37150417

ABSTRACT

BACKGROUND AND AIMS: Reintervention modalities after myotomy failure in achalasia patients have yet to be established. The efficacy and safety of salvage peroral endoscopic myotomy (POEM) for treatment of achalasia after myotomy failure were evaluated in the study. METHODS: Between August 2011 and August 2021 at the Endoscopy Center of Zhongshan Hospital, 219 achalasia patients who had previously undergone a myotomy underwent a salvage POEM and were thus retrospectively enrolled in this study. After propensity score matching (PSM), operation-related parameters were compared between the salvage POEM group and the naïve POEM group. Subgroup analysis was performed between patients with previous Heller myotomy (HM) and patients with previous POEM. RESULTS: With similar baseline characteristics between both groups after PSM, the salvage POEM group presented with shorter tunnel length (11.8 ± 2.2 cm vs 12.8 ± .9 cm, P < .0001) and myotomy length (9.8 ± 2.0 cm vs 10.4 ± 1.0 cm, P < .0001) than the naïve POEM group. No significant differences were found in procedure-related adverse events between patients of salvage POEM and naïve POEM. The primary outcome of treatment success occurred in 175 of 193 patients (90.7%) in the salvage POEM group versus 362 of 374 patients (96.8%) in the naïve POEM group (P = .0046). At a 2- and 5-year follow-up, significantly higher rates of clinical failures were observed in the previous HM subgroup than in the previous POEM subgroup (P = .0433 and P = .0230, respectively). CONCLUSIONS: Salvage POEM after a previous myotomy failure, especially after a POEM failure, is a promising treatment option because it has a durable clinical relief rate.


Subject(s)
Digestive System Surgical Procedures , Esophageal Achalasia , Heller Myotomy , Myotomy , Humans , Esophageal Achalasia/surgery , Retrospective Studies
5.
Microbiol Spectr ; : e0367322, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36723073

ABSTRACT

Staphylococcus aureus is a Gram-positive bacterium responsible for most hospital-acquired (nosocomial) and community-acquired infections worldwide. The only therapeutic strategy against S. aureus-induced infections, to date, is antibiotic treatment. A protective vaccine is urgently needed in view of the emergence of antibiotic-resistant strains associated with high-mortality cases; however, no such vaccine is currently available. In our previous work, the feasibility of implementing a Lactobacillus delivery system for development of S. aureus oral vaccine was first discussed. Here, we describe systematic screening and evaluation of protective effects of engineered Lactobacillus against S. aureus infection in terms of different delivery vehicle strains and S. aureus antigens and in localized and systemic infection models. Limosilactobacillus reuteri WXD171 was selected as the delivery vehicle strain based on its tolerance of the gastrointestinal environment, adhesion ability, and antimicrobial activities in vitro and in vivo. We designed, constructed, and evaluated engineered L. reuteri strains expressing various S. aureus antigens. Among these, engineered L. reuteri WXD171-IsdB displayed effective protection against S. aureus-induced localized infection (pneumonia and skin infection) and, furthermore, a substantial survival benefit in systemic infection (sepsis). WXD171-IsdB induced mucosal responses in gut-associated lymphoid tissues, as evidenced by increased production of secretory IgA and interleukin 17A (IL-17A) and proliferation of lymphocytes derived from Peyer's patches. The probiotic L. reuteri-based oral vaccine appears to have strong potential as a prophylactic agent against S. aureus infections. Our findings regarding utilization of Lactobacillus delivery system in S. aureus vaccine development support the usefulness of this live vaccination strategy and its potential application in next-generation vaccine development. IMPORTANCE We systematically screened and evaluated protective effects of engineered Lactobacillus against S. aureus infection in terms of differing delivery vehicle strains and S. aureus antigens and in localized and systemic infection models. Engineered L. reuteri was developed and showed strong protective effects against both types of S. aureus-induced infection. Our findings regarding the utilization of a Lactobacillus delivery system in S. aureus vaccine development support the usefulness of this live vaccination strategy and its potential application in next-generation vaccine development.

6.
Vaccines (Basel) ; 9(9)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34579221

ABSTRACT

Staphylococcus aureus is a leading cause of nosocomial and community-associated infection worldwide; however, there is no licensed vaccine available. S. aureus initiates infection via the mucosa; therefore, a mucosal vaccine is likely to be a promising approach against S. aureus infection. Lactobacilli, a non-pathogenic bacterium, has gained increasing interest as a mucosal delivery vehicle. Hence, we attempted to develop an oral S. aureus vaccine based on lactobacilli to cushion the stress of drug resistance and vaccine needs. In this study, we designed, constructed, and evaluated recombinant Lactobacillus strains synthesizing S. aureus nontoxic mutated α-hemolysins (HlaH35L). The results from animal clinical trials showed that recombinant Lactobacillus can persist for at least 72 h and can stably express heterologous protein in vivo. Recombinant L. plantarum WXD234 (pNZ8148-Hla) could induce robust mucosal immunity in the GALT, as evidenced by a significant increase in IgA and IL-17 production and the strong proliferation of T-lymphocytes derived from Peyer's patches. WXD234 (pNZ8148-Hla) conferred up to 83% protection against S. aureus pulmonary infection and significantly reduced the abscess size in a S. aureus skin infection model. Of particular interest is the sharp reduction of the protective effect offered by WXD234 (pNZ8148-Hla) vaccination in γδ T cell-deficient or IL-17-deficient mice. In conclusion, for the first time, genetically engineered Lactobacillus WXD234 (pNZ8148-Hla) as an oral vaccine induced superior mucosal immunity, which was associated with high protection against pulmonary and skin infections caused by S. aureus. Taken together, our findings suggest the great potential for a delivery system based on lactobacilli and provide experimental data for the development of mucosal vaccines for S. aureus.

7.
Chem Sci ; 12(29): 10063-10069, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34349970

ABSTRACT

The use of peptide amphiphiles (PAs) is becoming increasingly popular, not only because of their unique self-assembly properties but also due to the versatility of designs, allowing biological responsiveness, biocompatibility, and easy synthesis, which could potentially contribute to new drug design and disease treatment concepts. Oligonucleotides, another major functional bio-macromolecule class, have been introduced recently as new functional building blocks into PAs, further enriching the tools available for the fabrication of bio-functional PAs. Taking advantage of this, in the present work, two nucleic base-linked (adenine, A and thymine, T) RGD-rich peptide amphiphiles (NPAs) containing the fluorophores naphthalimide and rhodamine (Nph-A and Rh-T) were designed and synthesized. The two NPAs exhibit distinctive assembly behaviours with spherical (Rh-T) and fibrous (Nph-A) morphologies, and mixing Nph-A with Rh-T leads to a densely crosslinked colloidal network (Nph-A/Rh-T) via mutually promoted supramolecular polymerization via nucleation-growth assembly. Because of the RGD-rich sequences in the crosslinked network, further research on in situ targeted cancer cell (MDA-MB-231) encapsulation via RGD-integrin recognition was performed, and the modulation of cell behaviours (e.g., cell viability and migration) was demonstrated using both confocal laser scanning microscopy (CLSM) imaging and a scratch wound healing assay.

8.
Front Physiol ; 12: 666138, 2021.
Article in English | MEDLINE | ID: mdl-34122138

ABSTRACT

Liver fibrosis refers to the process underlying the development of chronic liver diseases, wherein liver cells are repeatedly destroyed and regenerated, which leads to an excessive deposition and abnormal distribution of the extracellular matrix such as collagen, glycoprotein and proteoglycan in the liver. Liver fibrosis thus constitutes the pathological repair response of the liver to chronic injury. Hepatic fibrosis is a key step in the progression of chronic liver disease to cirrhosis and an important factor affecting the prognosis of chronic liver disease. Further development of liver fibrosis may lead to structural disorders of the liver, nodular regeneration of hepatocytes and the formation of cirrhosis. Hepatic fibrosis is histologically reversible if treated aggressively during this period, but when fibrosis progresses to the stage of cirrhosis, reversal is very difficult, resulting in a poor prognosis. There are many causes of liver fibrosis, including liver injury caused by drugs, viral hepatitis, alcoholic liver, fatty liver and autoimmune disease. The mechanism underlying hepatic fibrosis differs among etiologies. The establishment of an appropriate animal model of liver fibrosis is not only an important basis for the in-depth study of the pathogenesis of liver fibrosis but also an important means for clinical experts to select drugs for the prevention and treatment of liver fibrosis. The present study focused on the modeling methods and fibrosis characteristics of different animal models of liver fibrosis, such as a chemical-induced liver fibrosis model, autoimmune liver fibrosis model, cholestatic liver fibrosis model, alcoholic liver fibrosis model and non-alcoholic liver fibrosis model. In addition, we also summarize the research and application prospects concerning new organoids in liver fibrosis models proposed in recent years. A suitable animal model of liver fibrosis and organoid fibrosis model that closely resemble the physiological state of the human body will provide bases for the in-depth study of the pathogenesis of liver fibrosis and the development of therapeutic drugs.

SELECTION OF CITATIONS
SEARCH DETAIL
...