Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Lab Chip ; 24(14): 3422-3433, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38860416

ABSTRACT

Thrombosis, characterized by blood clot formation within vessels, poses a significant medical challenge. Despite extensive research, the development of effective thrombosis therapies is hindered by substantial costs, lengthy development times, and high failure rates in medication commercialization. Conventional pre-clinical models often oversimplify cardiovascular disease, leading to a disparity between experimental results and human physiological responses. In response, we have engineered a photothrombosis-on-a-chip system. This microfluidic model integrates human endothelium, human whole blood, and blood flow dynamics and employs the photothrombotic method. It enables precise, site-specific thrombus induction through controlled laser irradiation, effectively mimicking both normal and thrombotic physiological conditions on a single chip. Additionally, the system allows for the fine-tuning of thrombus occlusion levels via laser parameter adjustments, offering a flexible thrombus model with varying degrees of obstruction. Additionally, the formation and progression of thrombosis noted on the chip closely resemble the thrombotic conditions observed in mice in previous studies. In the experiments, we perfused recalcified whole blood with Rose Bengal into an endothelialized microchannel and initiated photothrombosis using green laser irradiation. Various imaging methods verified the model's ability to precisely control thrombus formation and occlusion levels. The effectiveness of clinical drugs, including heparin and rt-PA, was assessed, confirming the chip's potential in drug screening applications. In summary, the photothrombosis-on-a-chip system significantly advances human thrombosis modeling. Its precise control over thrombus formation, flexibility in the thrombus severity levels, and capability to simulate dual physiological states on a single platform make it an invaluable tool for targeted drug testing, furthering the development of organ-on-a-chip drug screening techniques.


Subject(s)
Lab-On-A-Chip Devices , Thrombosis , Humans , Lasers , Microfluidic Analytical Techniques/instrumentation , Animals , Rose Bengal
2.
Opt Express ; 32(10): 18055-18067, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858971

ABSTRACT

The polarized spectral properties and ∼2.3 µm high-power continuous-wave laser operation of Tm3+-doped yttrium orthovanadate crystal (Tm:YVO4) are reported. For the 3H4 → 3H5 transition, the stimulated-emission cross-section σSE is 1.01 × 10-20 cm2 at 2276 nm corresponding to a large emission bandwidth of 52 nm (for π-polarization). Pumped by a 794 nm laser diode, the 1.5 at.% Tm:YVO4 laser delivered 5.52 W at 2.29 µm with a slope efficiency of 19.9%, a laser threshold of 8.70 W, and a linear laser polarization (π). The Tm laser operated on the cascade scheme (on the 3H4 → 3H5 and 3F4 → 3H6 transitions) which was mainly responsible for the observed high laser slope efficiency. We also report on the first passively Q-switched Tm:YVO4 laser at 2.3 µm by employing porous nano-grained cuprous selenide (PNG-Cu2Se) as a saturable absorber. The shortest pulse duration and the highest single pulse energy amounted to 706 ns and 3.65 µJ, respectively, corresponding to a pulse repetition rate of 62.8 kHz.

3.
Int Immunopharmacol ; 137: 112414, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38897132

ABSTRACT

BACKGROUND: Chronic stress-induced neuroinflammation plays a pivotal role in the development and exacerbation of mental disorders, such as anxiety and depression. Dimethyl Fumarate (DMF), an effective therapeutic agent approved for the treatment of multiple sclerosis, has been widely reported to display anti-inflammatory and anti-oxidative effects. However, the impact of DMF on chronic stress-induced anxiety disorders and the exact underlying mechanisms remain largely unknown. METHODS: We established a mouse model of chronic social defeat stress (CSDS). DMF was administered orally 1 h before daily stress session for 10 days in CSDS + DMF group. qRT-PCR and western blotting were used to analyze mRNA and protein expression of NLRP3, Caspase-1 and IL-1ß. Immunofluorescence staining was carried out to detect the expression of Iba 1 and c-fos positive cells as well as morphological change of Iba 1+ microglia. Whole-cell patch-clamp recording was applied to evaluate synaptic transmission and intrinsic excitability of neurons. RESULTS: DMF treatment significantly alleviated CSDS-induced anxiety-like behaviors in mice. Mechanistically, DMF treatment prevented CSDS-induced neuroinflammation by inhibiting the activation of microglia and NLRP3/Caspase-1/IL-1ß signaling pathway in basolateral amygdala (BLA), a brain region important for emotional processing. Furthermore, DMF treatment effectively reversed the CSDS-caused disruption of excitatory and inhibitory synaptic transmission balance, as well as the increased intrinsic excitability of BLA neurons. CONCLUSIONS: Our findings provide new evidence that DMF may exert anxiolytic effect by preventing CSDS-induced activation of NLRP3/Caspase-1/IL-1ß signaling pathway and alleviating hyperactivity of BLA neurons.


Subject(s)
Anxiety , Dimethyl Fumarate , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Neurons , Stress, Psychological , Animals , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , Male , Stress, Psychological/drug therapy , Stress, Psychological/immunology , Mice , Anxiety/drug therapy , Neurons/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Amygdala/drug effects , Amygdala/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/immunology , Disease Models, Animal , Interleukin-1beta/metabolism , Microglia/drug effects , Behavior, Animal/drug effects , Caspase 1/metabolism , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Signal Transduction/drug effects , Social Defeat
4.
Opt Express ; 32(11): 19611-19625, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859092

ABSTRACT

We report on the Czochralski crystal growth, polarized optical spectroscopy, and the first continuous-wave laser operation of 1.5 at.% Tm:LuVO4 crystal on the 3H4 → 3H5 transition. The polarized absorption and stimulated-emission properties of Tm3+ ions in LuVO4 were revised and the crystal-field splitting of the Tm3+ multiplets was determined by low-temperature (12 K) spectroscopy. The maximum stimulated-emission cross-section for the 3H4 → 3H5 transition is 2.48 × 10-20 cm2 at 2363 nm for π-polarization corresponding to an emission bandwidth of 28 nm. Evidence of phonon-assisted emissions of Tm3+ ions above 2 µm is presented. The broadband emission properties of the Tm:LuVO4 crystal make it promising for ultrashort pulse generation. Additionally, pumped by a 796 nm fiber-coupled laser diode, the Tm:LuVO4 laser generated a Watt-level output power at 2279-2295 nm with a slope efficiency of 9.2% and linearly polarized emission (π-polarization).

5.
Opt Express ; 32(9): 15472-15482, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859196

ABSTRACT

As a new member of two-dimensional (2D) phosphorene, 2D layered violet phosphorus (VP) has unique optoelectronic properties and good environmental stability, showing its huge advantages in optoelectronic applications. In this paper, the ultrafast nonlinear optical (NLO) properties of layered VP nanosheets at 1 µm band were explored, which exhibit an obvious saturable absorption response with a modulation depth of ∼1.97%. Meanwhile, the fast and slow carrier lifetimes of VP nanosheets at 1µm band were also determined as 295.9 fs and 2.36 ps, respectively, which are much shorter than that of most reported 2D materials. The excellent saturable absorption response combined with ultrashort carrier lifetimes indicate the prospect of layered VP nanosheets as a fast saturable absorber (SA) for ultrafast laser modulation. Then we demonstrated a Yb-doped fiber laser based on the VP-deposited taper-shaped fiber (TSF) SA, which delivers stable Q-switched mode-locked (QSML) pulses, dual-wavelength mode-locked pulses and 404-fs noise-like pulses. This work fully demonstrates the great potential of 2D VP materials for 1 µm ultrashort laser pulse generation.

6.
Conserv Biol ; : e14297, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752477

ABSTRACT

Protected areas (PAs) are pivotal to biodiversity conservation, yet their efficacy is compromised by insufficient funding and management. So-called other effective area-based conservation measures (OECMs) present a paradigm shift and address PA limitations. Such measures can expand conservation areas, enhance connectivity, and improve the existing system. To assess the conservation status of biodiversity in Tibetan cultural areas in China, we investigated the spatial distribution of wildlife vulnerable to human disturbance (large- and medium-sized mammals and terrestrial birds) in Xinlong, a traditional Tibetan cultural area. In particular, we compared a PA (Xionglongxi Nature Reserve) and OECMs targeting species conservation. We also investigated the relationship of wildlife with human temporal and spatial activities. The OECMs complemented areas not covered by PA, especially in rich understory biodiversity regions. More species in OECMs tolerated human presence than species in the PA. Existing biodiversity reserves failed to cover areas of high conservation value in Tibet and offered limited protection capacity. Expanding PAs and identifying OECMs improved Xinlong's system by covering most biodiversity hotspots. Building on the tradition of wildlife conservation in Tibet, harnessing OECMs may be an effective means of augmenting biodiversity conservation capacity. We recommend further evaluation of OECMs effectiveness and coverage in Tibetan area as a way to enhance the current PA system.


自然保护地(protected areas, PAs)被认为是生物多样性保护的最重要且最有效的措施之一。然而, 由于资金不足和管理缺失等因素, 自然保护地体系的有效性被大幅度削弱。"其他有效的基于区域的保护措施(other effective area­based conservation measures, OECMs)"引起了基于区域的保护范式转变, 能够有效弥补PAs的不足。OECMs能够有效实现保护面积的扩大, 加强保护地之间的连通性, 完善现有保护地体系。基于此, 为进一步了解中国藏文化地区生物多样性的保护情况, 评估PAs和OECMs在物种保护上的差异。我们以中国新龙县为例, 调查了当地大中型哺乳动物和地栖鸟类这类容易受人为干扰的野生动物的空间分布和与人类互作的时空活动关系。结果表明, 在保护区无法覆盖的区域, OECMs能够提供有效的补充, 如林下区域的生物多样性保护。在OECMs范围内, 更多的物种能够在时空活动上容忍人类的存在, 尤其是猎物物种。在当前生物多样性优先保护区无法涵盖藏区高保护价值区域以及现有保护区保护能力有限的情况下, 藏区野生动物的保护需要采取更多针对性的措施。通过扩大保护区和确定OECMs区域, 能够覆盖新龙绝大部分生物多样性热点地区。鉴于藏区的野生动物保护传统, 借助OECMs的力量是完善和提高藏区生物多样性保护保护能力的有效手段。我们建议未来进一步评估藏区的OECMs的有效性及覆盖情况, 完善自然保护地体系。 基于其他有效的区域保护措施的中国新龙县保护地体系构建.

7.
Physiol Rep ; 12(8): e16019, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38627220

ABSTRACT

Inactivity can lead to muscle atrophy and capillary regression in skeletal muscle. Niacin (NA), known for inducing hypermetabolism, may help prevent this capillary regression. In this study involving adult female Sprague-Dawley rats, the animals were randomly assigned to one of four groups: control (CON), hindlimb unloading (HU), NA, and HU with NA supplementation (HU + NA). For a period of 2 weeks, the rats in the HU and HU + NA groups underwent HU, while those in the NA and HU + NA groups received NA (750 mg/kg) twice daily through oral administration. The results demonstrated that HU lowered capillary number, luminal diameter, and capillary volume, as well as decreased succinate dehydrogenase activity, slow fiber composition, and PGC-1α expression within the soleus muscle. However, NA supplementation prevented these alterations in capillary structure due to unloading by stimulating PGC-1α factors and inhibiting mitochondrial dysfunction. Therefore, NA supplementation could serve as a potential therapeutic approach for preserving the capillary network and mitochondrial metabolism of muscle fibers during periods of inactivity.


Subject(s)
Niacin , Rats , Female , Animals , Rats, Sprague-Dawley , Niacin/pharmacology , Niacin/metabolism , Niacin/therapeutic use , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Dietary Supplements , Hindlimb Suspension/methods
8.
Nano Lett ; 24(17): 5255-5259, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38647273

ABSTRACT

After the first report of a graphene-based passive mode-locking ultrafast fiber laser, two-dimensional materials as efficient saturable absorbers offer a new horizon in ultrafast fiber laser. However, the interactions on atomic scale between these two-dimensional materials and fiber and the fiber effect on the carrier dynamics have not been realized. To figure out the exact role of fiber and the carrier dynamics affected by the fiber substrate related to ultrafast photonics, bismuthene, a newly reported 2D quantum material used in a passive mode-locking fiber laser, deposited on α-quartz has been investigated. We surprisingly found that the α-quartz substrate can strongly accelerate the nonradiative electron-hole recombination of bismuthene in theory, and the transient absorption spectra of bismuthene on normal glass and α-quartz further verify the substrate effect on carrier dynamics of bismuthene. The discovery provides new thinking about substrate effect to regulate the performance of ultrafast mode-locking fiber lasers as well as ultrafast photonics.

9.
Micromachines (Basel) ; 15(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38675318

ABSTRACT

Arterial stiffness has been proved to be an important parameter in the evaluation of cardiovascular diseases, and Pulse Wave Velocity (PWV) is a strong indicator of arterial stiffness. Compared to regional PWV (PWV among different arteries), local PWV (PWV within a single artery) outstands in providing higher precision in indicating arterial properties, as regional PWVs are highly affected by multiple parameters, e.g., variations in blood vessel lengths due to individual differences, and multiple reflection effects on the pulse waveform. However, local PWV is less-developed due to its high dependency on the temporal resolution in synchronized signals with usually low signal-to-noise ratios. This paper presents a method for the noninvasive simultaneous measurement of two local PWVs in both left and right radial arteries based on the Fiber Bragg Grating (FBG) technique via correlation analysis of the pulse pairs at the fossa cubitalis and at the wrist. Based on the measurements of five male volunteers at the ages of 19 to 21 years old, the average left radial PWV ranged from 9.44 m/s to 12.35 m/s and the average right radial PWV ranged from 11.50 m/s to 14.83 m/s. What is worth mentioning is that a stable difference between the left and right radial PWVs was observed for each volunteer, ranging from 2.27 m/s to 3.04 m/s. This method enables the dynamic analysis of local PWVs and analysis of their features among different arteries, which will benefit the diagnosis of early-stage arterial stiffening and may bring more insights into the diagnosis of cardiovascular diseases.

10.
Molecules ; 29(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542887

ABSTRACT

Herein, a Sc(OTf)3-catalyzed (3+2) annulation of 2-indolylmethanols with propargylic alcohols is reported. The reaction proceeds via a Friedel-Crafts-type allenylation/5-exo-annulation cascade. In the reaction, 2-indolylmethanol is used as a three-carbon synthon, and propargyl alcohol is used as a two-carbon synthon. This method provides a direct and high-yield pathway for synthetically useful cyclopenta[b]indoles. In general, the method features easily accessible substrates with broad scope and generality, the formation of multiple bonds with high efficiency, and easy scale-up.

11.
Article in English | MEDLINE | ID: mdl-38530339

ABSTRACT

The baijiu fermentation environment hosts a variety of micro-organisms, some of which still remain uncultured and uncharacterized. In this study, the isolation, cultivation and characterization of three novel aerobic bacterial strains are described. The cells of strain REN20T were Gram-negative, strictly aerobic, motile and grew at 26-37 °C, at pH 6.0-9.0 and in the presence of 0-5.0   % (w/v) NaCl. The cells of strain REN29T were Gram-negative, strictly aerobic, motile and grew at 15-30 °C, at pH 6.0-9.0 and in the presence of 0-10.0   % (w/v) NaCl. The cells of strain REN33T were Gram-positive, strictly aerobic, motile and grew at 15-37 °C, at pH 5.0-10.0 and in the presence of 0-7.0   % (w/v) NaCl. The digital DNA-DNA hybridization and average nucleotide identity by orthology values between type strains in related genera and REN20T (20.3-36.8 % and 79.8-89.9  %), REN29T (20.3-36.8  % and 74.5-88.5  %) and REN33T (22.6-48.6  % and 75.8-84.2  %) were below the standard cut-off criteria for the delineation of bacterial species, respectively. Based on polyphasic taxonomy analysis, we propose three new species, Bosea beijingensis sp. nov. (=REN20T=GDMCC 1.2894T=JCM 35118T), Telluria beijingensis sp. nov. (=REN29T=GDMCC 1.2896T=JCM 35119T) and Agrococcus beijingensis sp. nov. (=REN33T=GDMCC 1.2898T=JCM 35164T), which were recovered during cultivation and isolation from baijiu mash.


Subject(s)
Actinomycetales , Bradyrhizobiaceae , Oxalobacteraceae , Sodium Chloride , Phylogeny , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Bacterial Typing Techniques , Base Composition , Fatty Acids/chemistry , Bacteria, Aerobic
12.
Opt Express ; 32(3): 3461-3469, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38297566

ABSTRACT

The laser diode (LD)-pumped Tm:YAP (a-cut, 3.5 at.%) laser generated a maximum ∼2.3 µm continuous wave (CW) laser output power of ∼3 W. The higher output power benefited from the positive effect of the cascade lasing (simultaneously operating on the 3H4 → 3H5 and 3F4 → 3H6 Tm3+ transition). It was the highest CW laser output power amongst the LD/Ti:Sapphire-CW-pumped ∼2.3 µm Tm3+-doped lasers reported so far. Under the cascade laser operation, the slope efficiency of the ∼2.3 µm laser emission versus the absorbed pump power increased from 13.0% to 21.4%.

13.
Opt Lett ; 48(24): 6404-6407, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38099759

ABSTRACT

A compact Tm:GdVO4 laser pumped by a 794 nm laser diode generated 6.09 W at 2.29 µm (3H4 → 3H5 Tm3+ transition) with a high slope efficiency of 30.8% and linear laser polarization (π). The polarized spectroscopic properties of Tm3+ in GdVO4 were also revised. The peak stimulated-emission cross section of Tm3+ is 2.97 × 10-20 cm2 at 2280 nm, corresponding to an emission bandwidth of 42 nm for π-polarized light.

14.
J Appl Stat ; 50(16): 3312-3336, 2023.
Article in English | MEDLINE | ID: mdl-37969890

ABSTRACT

Varying coefficient model (VCM) is extensively used in various scientific fields due to its capability of capturing the changing structure of predictors. Classical mean regression analysis is often complicated in the existence of skewed, heterogeneous and heavy-tailed data. For this purpose, this work employs the idea of model averaging and introduces a novel comprehensive approach by incorporating quantile-adaptive weights across different quantile levels to further improve both least square (LS) and quantile regression (QR) methods. The proposed procedure that adaptively takes advantage of the heterogeneous and sparse nature of input data can gain more efficiency and be well adapted to extreme event case and high-dimensional setting. Motivated by its nice properties, we develop several robust methods to reveal the dynamic close-to-truth structure for VCM and consistently uncover the zero and nonzero patterns in high-dimensional scientific discoveries. We provide a new iterative algorithm that is proven to be asymptotic consistent and can attain the optimal nonparametric convergence rate given regular conditions. These introduced procedures are highlighted with extensive simulation examples and several real data analyses to further show their stronger predictive power compared with LS, composite quantile regression (CQR) and QR methods.

15.
Animals (Basel) ; 13(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37958083

ABSTRACT

The habitat plays a crucial role in ensuring the survival of wildlife. However, the increasing disturbances caused by human activities present a substantial threat to habitats, especially for species such as the leopard cat (Prionailurus bengalensis), which is a significant small predator. Currently, research on leopard cats predominantly focuses on low-altitude regions within its distribution range, leaving plateau areas understudied. To enhance our understanding of the impact of human disturbances on leopard cat habitats, we undertook a study employing infrared camera trappings to monitor leopard cats' activity in Xinlong of southwestern China between 2015 and 2023. We analyzed the spatial distribution and habitat suitability of the leopard cats by utilizing ensemble species distribution models (ESDMs). Moreover, we employed two-species occupancy models to investigate the spatial interaction between leopard cats and human disturbances. The results indicated that (1) the potential suitable habitat area for leopard cats encompassed approximately 1324.93 km2 (14.3%), primarily located along the banks of Yalong river. (2) The distribution of suitable habitat was predominantly influenced by competitors, specifically the yellow-throated marten (YTM), accounting for 52.4% of the influence, as well as environmental factors such as distance to water (DTW) at 12.0% and terrain roughness index (TRI) at 10.0%. Human interference, including cattle presence (4.6%), distance to road (DTD, 4.9%), and distance to settlement (DTS, 3.5%), had a limited impact on the habitat distribution. (3) Within a 5 km radius, habitat suitability increased with proximity to human settlements. (4) Leopard cats exhibited spatial independence from humans and domestic cattle (species interaction factor (SIF) = 1.00) while avoiding domestic horses (SIF = 0.76 ± 0.03). The relatively minor impact of human disturbances in Xinlong could be attributed to traditional cultural practices safeguarding wildlife and the leopard cat's environmental adaptability. We recommend establishing a novel conservation paradigm based on the living dynamics of wildlife communities in Xinlong, thereby offering a more targeted approach to biodiversity preservation in the future.

16.
Opt Express ; 31(16): 26368-26377, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37710499

ABSTRACT

The laser diode (LD)-pumped efficient high-power cascade Tm:GdVO4 laser simultaneously operating on the 3F4 → 3H6 (at ∼2 µm) and 3H4 → 3H5 (at ∼2.3 µm) Tm3+ transition was first reported in this paper. The cascade Tm:GdVO4 laser generated a maximum total continuous-wave (CW) laser output power of 8.42 W with a slope efficiency of 40%, out of which the maximum ∼2.3 µm CW laser output power was 2.88 W with a slope efficiency of 14%. To our knowledge, 2.88 W is the highest CW laser output power amongst the LD-CW-pumped ∼2.3 µm Tm3+-doped lasers reported so far.

17.
Curr Protoc ; 3(8): e858, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37561726

ABSTRACT

One of the most sought-after topics in neuroscience is to understand how the environment regulates the activity and function of neural circuitry and subsequently influences relevant behaviors. In response to alterations in the environment, the neural circuits undergo adaptive changes ranging from gene expression changes to altered cellular function. Performing sequencing of the transcriptome involved in these behavior-related circuits will provide clues to accurately dissect the detailed mechanisms of related behavior. Here, we describe methods for marking and collecting the ventral hippocampus-projecting basolateral amygdala neurons, which have been repeatedly implicated in regulation of anxiety-like behavior, and subsequently constructing a library ready for sequencing. Specifically, the reported approaches include adeno-associated virus injection, acute brain slice isolation, cell suspension preparation, cell extraction, and cDNA library construction. By utilizing the techniques described here, researchers can comprehensively investigate the transcriptional levels of neural clusters embedded in particular circuits and discover potential pathogenic and therapeutic targets for behavior-relevant disorders. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Tagging of behavior-related neural circuits Basic Protocol 2: Isolation and capture of fluorescent-positive cells Basic Protocol 3: Foundation of sequencing library.


Subject(s)
Amygdala , Basolateral Nuclear Complex , Amygdala/physiology , Basolateral Nuclear Complex/physiology , Neurons/physiology , Anxiety , Sequence Analysis, RNA
18.
Opt Express ; 31(12): 19666-19674, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37381377

ABSTRACT

The exceptional mechanical, electronic, topological, and optical properties, make bismuthene an ideal candidate for various applications in ultrafast saturation absorption and spintronics. Despite the extensive research efforts devoted to synthesizing this material, the introduction of defects, which can significantly affect its properties, remains a substantial obstacle. In this study, we investigate the transition dipole moment and joint density of states of bismuthene with/without single vacancy defect via energy band theory and interband transition theory. It is demonstrated that the existence of the single defect enhances the dipole transition and joint density of states at lower photon energies, ultimately resulting in an additional absorption peak in the absorption spectrum. Our results suggest that the manipulation of defects in bismuthene has enormous potential for improving the optoelectronic properties of this material.

19.
Sci Adv ; 9(24): eadg7754, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37327329

ABSTRACT

Chiral ketones and their derivatives are useful synthetic intermediates for the synthesis of biologically active natural products and medicinally relevant molecules. Nevertheless, general and broadly applicable methods for enantioenriched acyclic α,α-disubstituted ketones, especially α,α-diarylketones, remain largely underdeveloped, owing to the easy racemization. Here, we report a visible light photoactivation and phosphoric acid-catalyzed alkyne-carbonyl metathesis/transfer hydrogenation one-pot reaction using arylalkyne, benzoquinone, and Hantzsch ester for the expeditious synthesis of α,α-diarylketones with excellent yields and enantioselectivities. In the reaction, three chemical bonds, including C═O, C─C, and C─H, are formed, providing a de novo synthesis reaction for chiral α,α-diarylketones. Moreover, this protocol provides a convenient and practical method to synthesize or modify complex bioactive molecules, including efficient routes to florylpicoxamid and BRL-15572 analogs. Computational mechanistic studies revealed that C-H/π interactions, π-π interaction, and the substituents of Hantzsch ester all play crucial roles in the stereocontrol of the reaction.


Subject(s)
Esters , Ketones , Stereoisomerism , Ketones/chemistry , Catalysis
20.
Am J Transl Res ; 15(4): 2304-2328, 2023.
Article in English | MEDLINE | ID: mdl-37193179

ABSTRACT

BACKGROUND: Glucose 6 phosphatase dehydrogenase (G6PD) is a key regulator of the pentose phosphate pathway (PPP). However, the exact role of G6PD in gastrointestinal cancers remains unclear. The purpose of this study is to explore the correlation of G6PD with clinical features, pathological stages, diagnosis and prognosis of gastrointestinal cancers, as well as uncover possible mechanisms of G6PD on mutations, immunity and signaling pathways. METHODS: G6PD mRNA expression data were downloaded from TCGA and GEO databases. Protein expression was examined by the HPA database. The correlation of G6PD expression with clinical and pathological characteristics was explored. The pROC package in R language was used to evaluate the diagnostic value of G6PD expression in gastrointestinal cancers. We accessed the correlation of disease-free survival (DFS) with G6PD online by Kaplan-Meier plotter. Univariate Cox regression and stepwise multiple Cox regression analysis were performed to determine the association between G6PD and patient's overall survival. In addition, genomic alterations, mutation profiles, immune infiltration, drug sensitivity and enrichment analysis related with G6PD were visualized. RESULTS: After a pan-cancerous genomic analysis, we found that G6PD expression was the highest in African American esophageal carcinoma (ESCA) patients (P<0.05). G6PD was correlated with age, weight, disease stage, lymph node metastasis and pathological grade. Notably, G6PD showed an excellent predictive diagnosis ability for liver hepatocellular carcinoma (LIHC) (AUC=0.949, 95% CI=0.925-0.973, P<0.001). G6PD can improve the DFS of esophageal adenocarcinoma (EAC) and pancreatic adenocarcinoma (PAAD) patients (P<0.05). Both Univariate Cox regression and stepwise multiple Cox regression analysis in R language determined that G6PD expression was closely related with LIHC (P<0.001). G6PD was found to have a high mutation rate in colon adenocarcinoma and ESCA and gene amplification in ESCA, Cholangiocarcinoma, PAAD and LIHC. Copy number of G6PD was missing in LIHC. G6PD was also related to mutation of TP53 (P<0.05). Particularly, it was positively correlated with CD276 in all gastrointestinal cancers and negatively with HERV-H LTR-associating 2 in ESCA and stomach adenocarcinoma. The abnormal expression of G6PD was related to the increase of CD4+ Th2 subsets and the decrease of CD4+ (non-regulatory) of T cells. G6PD was sensitive to FK866, Phenformin, AICAR etc., while resistant to RO-3306, CGP-082996, TGX221 etc. G6PD was found to closely interact with TALDO1, GAPDH and TP53. G6PD related biological processes included aging, nutritional response and daunorubicin metabolism, and related pathways included PPP, cytochrome P450 metabolism of exogenous substances and glutathione metabolism. CONCLUSION: G6PD is highly expressed in gastrointestinal cancers. It is a carcinogenic indicator related to prognosis and can be used as a potential diagnostic marker of gastrointestinal cancers, so as to provide new strategy for cancer treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...