Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
Pestic Biochem Physiol ; 195: 105547, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37666590

ABSTRACT

Henosepilachna vigintioctopunctata is a notorious pest of solanaceous plants in Asia, which is mainly managed by chemical pesticides. RNA interference (RNAi) technique is considered to be a promising and effective alternative for pest control. In this study, we selected the proteasome 20S subunit alpha 2 (Prosα2) gene, a cellular protein involved in many proteins regulatory processes, to explore the RNAi efficiency in H. vigintioctopunctata. The obtained results confirmed the significant lethal effects of HvProsα2 silencing on the H. vigintioctopunctata 1st instar larvae at concentrations of 100, 50, and 5 ng/µL. Ingestion of the bacterially expressed dsHvProsα2 caused high mortality in both larvae and adults. Moreover, silencing of HvProsα2 resulted in feeding disorders, growth delay, and abnormal intestinal development of the larvae. Overall, HvProsα2 acts as an important regulator for the growth and development of H. vigintioctopunctata, and can serve as a candidate target gene for the RNAi-based control of H. vigintioctopunctata.


Subject(s)
Coleoptera , Pesticides , Animals , Proteasome Endopeptidase Complex , RNA Interference , Larva/genetics
2.
Pestic Biochem Physiol ; 193: 105428, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37248006

ABSTRACT

Phyllotreta striolata (Fabricius), commonly known as the striped flea beetle (SFB), is a notorious insect pest that attacks Brassicaceae plants worldwide, leading to tremendous economic losses. RNA interference (RNAi) has been proposed as a promising strategy for sustainable and eco-friendly pest control. In this study, a total of nine housekeeping genes including PsVATPA, PsHSP90, PsEF1A, PsRPL6, PsRPS24, PsActin, PsTUBA, PsRPS18, and PsRPL4 were evaluated under four different conditions (organization, population, sex, and RNAi). PsEF1A and PsVATPA were identified as the best reference genes for RNAi bioassay. Furthermore, a total of 24 target genes were selected to investigate their RNAi effects in SFB adults with double-stranded RNAs (dsRNAs), five of them showed significant mortality (28.00% to 70.00%), namely Psα-COPI, Psß-COPI, PsRPS18, Psγ-COPI, and PsArf1COPI. We found that gene transcript levels of the two most lethal genes, Psγ-COPI and PsArf1COPI, were significantly decreased after treated with the target dsRNAs either by feeding or injection method. The findings from this study demonstrated that the introduction of dsRNAs via oral feedings or injection induces the RNAi-mediated silencing of target genes and can lead to insect mortality. Overall, the identified target genes can be explored in developing RNAi-based insecticides for SFB control.


Subject(s)
Coleoptera , Insecticides , Siphonaptera , Animals , Coleoptera/genetics , RNA Interference , Pest Control , Insecticides/pharmacology , Insecta/genetics , RNA, Double-Stranded/genetics
3.
Insect Sci ; 30(6): 1701-1712, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37147785

ABSTRACT

Inherited bacterial symbionts are very common in arthropods, but infection frequency can vary widely among populations. Experiments and interpopulation comparisons suggest that host genetic background might be important in explaining this variation. Our extensive field investigation showed that the infection pattern of the facultative symbiont Cardinium was heterogeneous across geographical populations of the invasive whitefly Bemisia tabaci Mediterranean (MED) in China, with genetic nuclear differences evident in 2 of the populations: 1 with a low infection rate (SD line) and 1 with a high infection rate (HaN line). However, whether the heterogeneous frequency of Cardinium is associated with the host genetic background remains poorly understood. Here, we compared the fitness of the Cardinium-infected and uninfected sublines with similar nuclear genetic backgrounds from SD and HaN lines, respectively, and further determine whether host extranuclear or nuclear genotype influenced the Cardinium-host phenotype by performing 2 new introgression series of 6 generations between SD and HaN lines (i.e., Cardinium-infected females of SD were backcrossed with uninfected males of HaN, and vice versa). The results showed that Cardinium provides marginal fitness benefits in the SD line, whereas Cardinium provides strong fitness benefits in the HaN line. Further, both Cardinium and the Cardinium-host nuclear interaction influence the fecundity and pre-adult survival rate of B. tabaci, whereas the extranuclear genotype does not. In conclusion, our results provide evidence that Cardinium-mediated fitness effects were closely associated with the host genetic background, which provides a fundamental basis for understanding the mechanism underlying the heterogeneous distribution of Cardinium in B. tabaci MED populations across China.


Subject(s)
Hemiptera , Rickettsia , Male , Female , Animals , Hemiptera/genetics , Hemiptera/microbiology , Symbiosis , Bacteroidetes , Fertility/genetics
4.
J Agric Food Chem ; 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36762732

ABSTRACT

RNA interference (RNAi)-mediated control of the notorious pest Henosepilachna vigintioctopunctata is an emerging environment friendly research area. However, the characterization of key target genes in H. vigintioctopunctata is crucial for this. Additionally, assessing the risk of RNAi to nontarget organisms (NTOs) is necessary for environmental safety. In this study, the potential of RNAi technology in controlling H. vigintioctopunctata infestation has been investigated by the oral delivery of double-stranded RNA (dsRNA). The results revealed that the silencing of six genes, including HvABCH1, HvHel25E, HvProsbeta5, HvProsalpha6, HvProsbeta6, and HvSrp54k, was highly lethal to H. vigintioctopunctata. The LC50 values of the dsRNAs used to silence these six genes were found to be less than 13 ng/µL. Moreover, the use of the bacterially expressed dsRNAs caused high mortality in the lab and field populations of H. vigintioctopunctata. Further, administration of HvHel25E and HvSrp54k dsRNAs in the predatory lady beetle Propylea japonica confirmed no transcriptional or organismal levels effects. This risk-assessment result ensured no off-target RNAi effects on the NTOs. Overall, the findings of the study suggested that HvABCH1, HvHel25E, HvProsbeta5, HvProsalpha6, HvProsbeta6, and HvSrp54k can be novel promising molecular targets with high specificity for H. vigintioctopunctata management with negligible effects on the NTOs.

5.
Front Physiol ; 13: 978534, 2022.
Article in English | MEDLINE | ID: mdl-36225297

ABSTRACT

The olfactory system is an important component of insect behavior and is vital for survival and reproduction. However, the genomic characterization and molecular basis of the olfactory response of Megalurothrips usitatus remain relatively unknown. RNA sequencing-built developmental transcriptomes of nymphs, pupae, and adult M. usitatus were examined in order to establish the sequence-based background of M. usitatus olfactory responses. A total of 56,669 unigenes were annotated using GO, NR, Pfam, eggNOG, SwissProt, and KEGG. The number of differentially expressed genes between pupae and nymphs, males and nymphs, and females and nymphs were 10,498, 9,235, and 10,964, respectively. One odorant-binding protein (MusiOBP1) and one chemosensory protein (MusiCSP1) were selected from the transcriptome, and their full-length sequences were obtained using RACE PCR. The relative expression of MusiOBP1 was the highest in primordial females, whereas the relative expression of MusiCSP1 was the highest in primordial pupae. The strongest binding ability to the odor-binding protein MusiOBP1 was observed for ß-citronellol. 3-Hydroxy-2-methyl-4-pyrone showed the strongest binding affinity to MusiCSP1. Our analysis suggests that MusiOBP1 and MusiCSP1 may play significant roles in mediating M. usitatus host recognition. This research will improve our knowledge of odorant-binding proteins and chemosensory proteins, which will in turn improve our understanding of insect olfactory systems.

6.
Pest Manag Sci ; 78(9): 3859-3870, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35524967

ABSTRACT

BACKGROUND: Tyrosine hydroxylase (TH), a melanin synthesis pathway enzyme hydroxylating tyrosine into 3,4-dihydroxyphenylalanine, is involved in the pigmentation and sclerotization of insect cuticles. However, the role of TH in 28-spotted potato ladybeetle (Henosepilachna vigintioctopunctata), an emerging pest of the solanaceous crops has been explored to a limited extent. In this study, we integrated dietary RNA interference (RNAi) and hematoxylin and eosin (H&E) staining with various bioassays to analyze the role of tyrosine hydroxylase (HvTH) throughout the developmental processes of Henosepilachna vigintioctopunctata. RESULTS: The results revealed that ingestion of dsHvTH led to cuticle tanning impairment, arrested larval feeding in the first and second instars of Henosepilachna vigintioctopunctata, and subsequently resulted in 100% mortality. The H&E staining assays revealed that dsHvTH prevented new abdominal cuticle formation. A pharmacological study using 3-iodo-tyrosine (3-IT), a HvTH inhibitor, disrupted larval-larval-pupal cuticle tanning during the third-fourth instar larval development and eventually failed to pupate. Similarly, dsHvTH fed to fourth instars hindered larval-pupal-adult cuticle tanning, and the eclose adults were 100% malformed. Ingestion of dsHvTH or 3-IT significantly down-regulated HvTH, HvDDC, Hvebony, and Hvlaccase2 expression and reduced dopamine levels. Finally, HvTH silencing in adult females substantially reduced the offspring hatching rates. CONCLUSIONS: The collective results of the study suggested that HvTH plays conserved roles in larval-pupal-adult cuticle melanization and sclerotization while exhibiting a novel function in Henosepilachna vigintioctopunctata reproduction. © 2022 Society of Chemical Industry.


Subject(s)
Coleoptera , Solanum tuberosum , Animals , Coleoptera/metabolism , Female , Insect Proteins/genetics , Insect Proteins/metabolism , Larva , Pupa , RNA Interference , Reproduction , Solanum tuberosum/metabolism , Tyrosine/genetics , Tyrosine/metabolism , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
7.
Pestic Biochem Physiol ; 182: 105029, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35249644

ABSTRACT

Fushi-tarazu factor 1 (FTZF1) is an ecdysone-inducible transcription factor that plays a vital role during the metamorphosis in insects. In this study, we functionally characterized HvFTZ-F1 in H. vigintioctopunctata, a dreadful solanaceous crop pest, by using a dietary RNA interference technique. The HvFTZ-F1 expression levels were elevated in the 1st and 2nd-instars before molting and declined immediately after ecdysis. The HvFTZ-F1 silencing led to high mortality in the 1st instars, while the expression of the osmosis-regulative gene, HvAQPAn.G, was significantly increased in the 1st instars. HvFTZ-F1 silencing downregulated the Halloween and 20E-related genes, decreased the ecdysteroids titer, suppressed the expression of pigmentation-related genes, and reduced the catecholamines titer. In the 4th instars, HvFTZ-F1 silencing caused 100% mortality by arresting the development at the prepupal stage and preventing new abdominal cuticle formation. In the female adults, HvFTZ-F1 silencing caused an evident decrease in fecundity, prolonged the pre-oviposition period, reduced the number of eggs and hatching rate, severely atrophied the ovaries. Moreover, the 20E-related genes and the dopamine synthesis genes were suppressed in the dsHvFTZ-F1-treated females. Overall, our results revealed that HvFTZ-F1 regulates ecdysis, pupation, and reproduction in H. vigintioctopunctata, thereby could be a promising molecular target for the development of RNAi-based biopesticides to control H. vigintioctopunctata.


Subject(s)
Molting , Solanum tuberosum , Animals , Drugs, Chinese Herbal , Insect Proteins/genetics , Insect Proteins/metabolism , Larva/genetics , Molting/genetics , RNA Interference , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Reproduction , Solanum tuberosum/metabolism
8.
Pest Manag Sci ; 78(9): 3871-3879, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34398523

ABSTRACT

BACKGROUND: Use of RNA interference (RNAi) technology in effective pest management has been explored for decades. Henosepilachna vigintioctopunctata is a major solanaceous crop pest in Asia. In this study, the effects of the RNAi-mediated silencing of clathrin heavy chain in H. vigintioctopunctata were investigated. RESULTS: Feeding either the in vitro-synthesized or the bacterially expressed double-stranded RNAs (dsRNAs) significantly impaired the normal physiology of H. vigintioctopunctata instars and adults. However, the bacterially expressed dsHvChc caused higher mortality than the in vitro-synthesized ones in the larvae and adults. Moreover, on evaluating the potential risk of dsHvChc on Propylea japonica, significant transcriptional effects of dsHvChc1 were observed, while the organismal level effects were not significant. On the contrary, dsHvChc2 did not affect P. japonica at either level. A similar test revealed significant transcriptional effects of dsPjChc1 on H. vigintioctopunctata, while staying ineffective at the organismal levels. Conversely, dsPjChc2 did not affect H. vigintioctopunctata at either level. Importantly, no effect of dsPjChc1 exposure on H. vigintioctopunctata suggested that other factors besides the 21-nucleotide (nt) matches between sequences were responsible. Finally, ingestion of dsHvmChc1 derived from H. vigintioctomaculata, containing 265-nt matches with dsHvChc1, caused 100% mortality in H. vigintioctopunctata. CONCLUSIONS: We conclude that (i) species with numerous 21-nt matches in homologous genes are more likely to be susceptible to dsRNA; (ii) dsRNA can be safely designed to avoid negative effects on non-target organisms at both transcriptional and organismal levels; (iii) HvChc can be used as an efficient RNAi target gene to effectively manage H. vigintioctopunctata. © 2021 Society of Chemical Industry.


Subject(s)
Coleoptera , Solanum tuberosum , Animals , Clathrin Heavy Chains/genetics , Clathrin Heavy Chains/pharmacology , Coleoptera/physiology , RNA Interference , RNA, Double-Stranded/genetics , RNA, Double-Stranded/pharmacology , Solanum tuberosum/genetics
9.
Ecotoxicol Environ Saf ; 225: 112743, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34481350

ABSTRACT

Fluralaner, a systemic pesticide, was originally registered with the US Food and Drug Administration in 2014 under the trade name Bravecto for flea treatment for pets. As a GABA antagonist, the footprint of fluralaner has expended beyond medical and veterinary pests in recent years. In this study, we examined the acute toxicity of fluralaner against three pests of Henosepilachna vigintioctopunctata, Megalurothrips usitatus, and Phyllotreta striolata in the Solanaceae, Fabaceae, and Cruciferae families, respectively, and the sublethal impact of fluralaner on Propylaea japonica, a widely distributed predatory ladybeetle. Based on LC50, fluralaner was effective against H. vigintioctopunctata (0.098 mg a.i. L-1 for the second instar larvae), M. usitatus (0.134 mg a.i. L-1 for adult females), and P. striolata (0.595 mg a.i. L-1 for adults). For P. japonica, however, fluralaner was substantially less effective (1.177 mg a.i. L-1 for the third instar larvae). Furthermore, the LC10 and LC30 of P. japonica were also consistently higher than the LC50 of the three pests. In addition, we did not observe any significant impacts of fluralaner at LC10 and LC30 on the life history traits, including body weight, developmental time, pre-oviposition period, and fecundity of P. japonica. Based on our results from acute toxicities and sublethal impacts, fluralaner is effective against vegetable pests, while potentially friendly to P. japonica when employed as a biological control agent.


Subject(s)
Coleoptera , Insecticides , Animals , Humans , Insecticides/toxicity , Isoxazoles/toxicity , Predatory Behavior , United States , Vegetables
10.
Oxid Med Cell Longev ; 2021: 2060288, 2021.
Article in English | MEDLINE | ID: mdl-34336086

ABSTRACT

Ultraviolet (UV) radiation significantly affects insect life and, as a result, has been widely used to control different invertebrate pests. The current results demonstrate that when Bemisia tabaci first instar nymphs are exposed to UV-A light for 12, 24, 48, and 72 h, their developmental and biological parameters are negatively affected by UV-A exposure; the effect increased with an increase in exposure time. We hypothesized that UV-A light is compatible with other biological control agents. Results showed that when the entomopathogenic fungus Cordyceps fumosorosea was applied to third instar nymphs of B. tabaci previously exposed to UV-A light, the LC50 was 3.4% lower after 72 h of exposure to UV-A light compared to the control. However, when the fungus was exposed to UV-A light, its virulence decreased with an increase in UV-A exposure time. The parasitism rate of Encarsia formosa against 24 h UV-A-exposed third instar nymphs of B. tabaci increased while the adult emergence from parasitized nymphs was not affected after UV-A light exposure. Parasitism rate was significantly reduced however following E. formosa exposure to UV-A light; but again, adult emergence was not affected from parasitized nymphs. The percentage mortality of E. formosa increased with increasing exposure time to UV-A light. The enzyme activity of SOD, CAT, GST, and AChE and the energy reserve contents were negatively affected due to UV-A exposure. Collectively, this study has demonstrated that UV-A light significantly suppresses the immune system of B. tabaci and that UV-A light is compatible with other biological control agents if it is applied separately from the biological agent.


Subject(s)
Hemiptera/chemistry , Ultraviolet Rays , Ultraviolet Therapy/methods , Animals
11.
Insect Sci ; 28(6): 1664-1676, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33421334

ABSTRACT

RNA interference (RNAi) has emerged as a powerful tool for developing novel management strategies for controlling insect pests. The 28-spotted ladybeetle, Henosepilachna vigintioctopunctata is one of the most important pests attacking solanaceous plants in Asia. In this study, the potential of dietary RNAi to manage H. vigintioctopunctata was investigated using both in vitro synthesized and bacterially expressed double-stranded RNAs (dsRNAs) of HvvATPase A and HvvATPase E. The expression levels of HvvATPase A and HvvATPase E were higher in Malpighian tubules than in other tissue types. The silencing of HvvATPase A and HvvATPase E led to significant mortality in H. vigintioctopunctata larvae. In addition, the ingestion of HvvATPase A and HvvATPase E significantly deterred feeding behavior and subsequently arrested the development of H. vigintioctopunctata. Notably, the bacterially expressed dsRNAs consistently caused higher mortality in larvae and adults. Finally, the nontarget effects of the dsRNAs of H. vigintioctopunctata on the predatory ladybeetle Propylaea japonica were evaluated. P. japonica 1st instar larvae were administered vATPase A and vATPase E dsRNAs from H. vigintioctopunctata and P. japonica under the worst-case scenario, in which dsGFP served as negative control. There were significant effects of dsHvvATPase A on P. japonica at the transcriptional level but not at the organismal level, whereas dsHvvATPase E did not effect P. japonica at either the transcriptional or the organismal level. Collectively, the results of the study suggest that HvvATPase A and HvvATPase E can act as novel molecular targets for the control of H. vigintioctopunctata.


Subject(s)
Coleoptera , Insect Control/methods , RNA Interference , Vacuolar Proton-Translocating ATPases/genetics , Animals , Coleoptera/enzymology , Coleoptera/genetics , Larva , RNA, Double-Stranded
12.
Insect Sci ; 28(2): 509-520, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32240577

ABSTRACT

RNA interference (RNAi) techniques have emerged as powerful tools that facilitate development of novel management strategies for insect pests, such as Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae), which is a major pest of solanaceous plants in Asia. In this study, the potential of oral delivery of in vitro-synthesized and bacterially expressed double-stranded H. vigintioctopunctata lesswright (lwr) gene (dsHvlwr) to manage of H. vigintioctopunctata was investigated. Our results showed that the gene Hvlwr had a 480-bp open reading frame and encoded a 160-amino acid protein. Hvlwr expression levels were greater in the fat body than other tissue types. Hvlwr silencing led to greater H. vigintioctopunctata mortality rates and appeared to be time- and partially dose-dependent, likely as a result of the number of hemocytes increasing with dsRNA concentration, but decreasing with time. Bacterially expressed dsHvlwr that was applied to leaf discs caused 88%, 66%, and 36% mortality in 1st instars, 3rd instars, and adults after 10, 10, and 14 d, respectively; when applied to living plants, there was greater mortality in 1st and 3rd instars, but there was no effect on adults. Furthermore, dsHvlwr led to improved plant protection against H. vigintioctopunctata. Our study shows an effective dietary RNAi response in H. vigintioctopunctata and that Hvlwr is a promising RNAi target gene for control of this pest species.


Subject(s)
Coleoptera/physiology , Insect Control/methods , Insect Proteins/genetics , RNA Interference , Animals , Coleoptera/genetics , Coleoptera/growth & development , Insect Proteins/metabolism , Larva/growth & development , Larva/physiology , Pupa/growth & development , Pupa/physiology
13.
Genes (Basel) ; 11(10)2020 10 10.
Article in English | MEDLINE | ID: mdl-33050374

ABSTRACT

Tamarixia radiata (Waterston) is a predominant parasitoid of the Asian citrus psyllid (ACP), a destructive citrus pest and vector of huanglongbing (HLB) disease in the fields of southern China. To explore the functioning of target genes in T. radiata, the screening of specific reference genes is critical for carrying out the reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) under different experimental conditions. However, no reference gene(s) for T. radiata has yet been reported. Here, we selected seven housekeeping genes of T. radiate and evaluated their stability under the six conditions (developmental stage, sex, tissue, population, temperature, diet) by using RefFinder software, which contains four different programs (geNorm, ΔCt, BestKeeper, and NormFinder). Pairwise variation was analyzed by geNorm software to determine the optimal number of reference genes during the RT-qPCR analysis. The results reveal better reference genes for differing research foci: 18S and EF1A for the developmental stage; PRS18 and EF1A for sex, PRS18 and RPL13 for different tissues (head, thorax, abdomen); EF1A and ArgK between two populations; ß-tubulin and EF1A for different temperatures (5, 15, 25, 35 °C); and ArgK and PRS18 for different feeding diets. Furthermore, when the two optimal and two most inappropriate reference genes were chosen in different temperatures and tissue treatments, respectively, the corresponding expression patterns of HSP70 (as the reporter gene) differed substantially. Our study provides, for the first time, a more comprehensive list of optimal reference genes from T. radiata for use in RT-qPCR analysis, which should prove beneficial for subsequent functional investigations of target gene(s) in this natural enemy of ACP.


Subject(s)
Gene Expression Profiling/standards , Hemiptera/genetics , Insect Proteins/genetics , Real-Time Polymerase Chain Reaction/methods , Animals , Reference Standards
14.
Int J Mol Sci ; 21(14)2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32674498

ABSTRACT

Asian citrus psyllid Diaphorina citri Kuwayama is an important economic pest of citrus, as it transmits Candidatus Liberibacter asiaticus, the causative agent of huanglongbing. In this study, we used RNA-seq to identify novel genes and provide the first high-resolution view of the of D. citri transcriptome throughout development. The transcriptomes of D. citri during eight developmental stages, including the egg, five instars, and male and female adults were sequenced. In total, 115 million clean reads were obtained and assembled into 354,726 unigenes with an average length of 925.65 bp and an N50 length of 1733 bp. Clusters of Orthologous Groups, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes analyses were conducted to functionally annotate the genes. Differential expression analysis highlighted developmental stage-specific expression patterns. Furthermore, two trehalase genes were characterized with lower expression in adults compared to that in the other stages. The RNA interference (RNAi)-mediated suppression of the two trehalase genes resulted in significantly high D. citri mortality. This study enriched the genomic information regarding D. citri. Importantly, these data represent the most comprehensive transcriptomic resource currently available for D. citri and will facilitate functional genomics studies of this notorious pest.


Subject(s)
Citrus/parasitology , Hemiptera/genetics , Plant Diseases/parasitology , Transcriptome/genetics , Animals , Asia , Female , Gene Ontology , Insect Vectors/genetics , Male , Molecular Sequence Annotation/methods , RNA Interference/physiology
15.
Pestic Biochem Physiol ; 165: 104555, 2020 May.
Article in English | MEDLINE | ID: mdl-32359544

ABSTRACT

The development of genetic based techniques, specifically RNA interference (RNAi), has emerged as a powerful tool in novel pest management strategies for pestiferous coleoptera. The 28-spotted ladybird beetle, Henosepilachna vigintioctopunctata, is a dynamic foliar pest of solenaceous plants, primarily potato plants, and has quickly become one of the most important pests attacking many crops in Asian countries. In this study, we demonstrate the efficacy of dietary RNAi targeting vATPase B, which led to significant gene silencing. Downstream effects of vATPase B silencing appeared to be both time- and partial dose-dependent. Our results indicate that silencing of vATPase B caused a significant decrease in survival rate, as well as reduced the food stuffs consumption and inhibited the overall development of H. vigintioctopunctata. Furthermore, results demonstrate expression of insect melanism related genes, TH and DDC, was significantly up regulated under the dsvATPase B (RNAi molecule designed against vATPase B) treatment. The impact of oral dsvATPase B delivery on the survival of 1st, 3rd instars, and adults was investigated through bacterially expressed dsRNA. The effectiveness of RNAi-based gene silencing in H. vigintioctopunctata provides a powerful reverse genetic tool for the functional annotation of its genes. This study demonstrates that vATPase B may represent a candidate gene for RNAi-based control of H. vigintioctopunctata.


Subject(s)
Coleoptera , RNA, Double-Stranded , Animals , Diet , Pest Control , RNA Interference
16.
Pest Manag Sci ; 76(11): 3606-3614, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32400940

ABSTRACT

BACKGROUND: Most recently, major federal regulatory agencies deregulated an in planta RNA interference (RNAi) trait against a devastating corn pest, the western corn rootworm Diabrotica virgifera virgifera, in the United States and Canada. The impact of double-stranded RNA (dsRNA) plant-incorporated protectants (PIPs) and dietary RNAi to non-target organisms, however, still needs further investigation. In this study, we assessed the potential risks of a Diabrotica virgifera virgifera active dsRNA to a group of predatory biological control agents, including Hippodamia convergens, Harmonia axyridis, Coleomegilla maculata, and Coccinella septempunctata. The overarching hypothesis is that the insecticidal dsRNA targeting Diabrotica virgifera virgifera has no or negligible adverse effect on lady beetles. RESULTS: A 400-bp fragment with the highest sequence similarity between target and tested species was selected as the template for dsRNA synthesis. For the dietary RNAi toxicity assay, newly hatched first instar larvae were administered with v-ATPase A dsRNAs designed from Diabrotica virgifera virgifera and the four lady beetles, respectively. A dsRNA from ß-glucuronidase (GUS), a plant gene, and H2 O were served as the negative controls. The endpoint included both sub-organismal (gene expression), and organismal (survival rate, development time, pupa and adult weight) measurements. The results from dietary RNAi toxicity assay demonstrate significantly impacts of Diabrotica virgifera virgifera-active dsRNAs on lady beetles under the worst-case scenario at both transcriptional and phenotypic level. Interestingly, substantial differences among the four lady beetle species were observed toward the ingested exogenous dsRNAs. CONCLUSION: Such differential response to dietary RNAi may shed light on the mechanisms underlying the mode-of-action of RNAi-based biopesticides. © 2020 Society of Chemical Industry.


Subject(s)
Coleoptera , Animals , Canada , Coleoptera/genetics , Larva/genetics , Pest Control, Biological , RNA Interference , RNA, Double-Stranded/genetics , Zea mays/genetics
17.
Pest Manag Sci ; 76(8): 2663-2673, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32112472

ABSTRACT

BACKGROUND: RNA interference (RNAi) is a potential tool for plant protection against insect pests. The great challenge for effective pest control using RNAi in the field is the development of efficient and reliable methods for the production and delivery of double-stranded RNA (dsRNA). RESULTS: In the present study, we investigated the potential of feeding in vitro synthesized or bacterially expressed dsRNA to populations of the 28-spotted ladybeetle Henosepilachna vigintioctopunctata as a method of biological pest control. Ingestion of in vitro synthesized dsHvRPS18 or dsHvRPL13 led to significant down-regulation of the ribosomal protein-encoding genes HvRPS18 and HvRPL13, respectively, and significantly decreased the survival of H. vigintioctopunctata. Such silencing of HvRPS18 or HvRPL13 expression appeared to be partially dose-dependent and also inhibited the growth of H. vigintioctopunctata and significantly suppressed the expression of digestive enzyme-related genes. Finally, ingestion of bacterially expressed dsHvRPS18 or dsHvRPL13 induced significant mortality in the first and third instars, and in adults. CONCLUSION: The effectiveness of RNAi-based gene silencing in H. vigintioctopunctata provides a powerful reverse genetic tool for the functional annotation of its genes. This study demonstrates that HvRPS18 and HvRPL13 represent candidate genes for RNAi-based biological control of H. vigintioctopunctata. © 2020 Society of Chemical Industry.


Subject(s)
Coleoptera , Animals , Gene Silencing , Pest Control, Biological , RNA Interference , RNA, Double-Stranded
18.
BMC Plant Biol ; 19(1): 556, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31842757

ABSTRACT

BACKGROUND: While virus-vector-host interactions have been a major focus of both basic and applied ecological research, little is known about how different levels of plant defense interact with prior herbivory to affect these relationships. We used genetically-modified strains of tomato (Solanum lycopersicum) varying in the jasmonic acid (JA) plant defense pathways to explore how plant defense and prior herbivory affects a plant virus (tomato yellow leaf curl virus, 'TYLCV'), its vector (the whitefly Bemisia tabaci MED), and the host. RESULTS: Virus-free MED preferred low-JA over high-JA plants and had lower fitness on high-JA plants. Viruliferous MED preferred low-JA plants but their survival was unaffected by JA levels. While virus-free MED did not lower plant JA levels, viruliferous MED decreased both JA levels and the expression of JA-related genes. Infestation by viruliferous MED reduced plant JA levels. In preference tests, neither virus-free nor viruliferous MED discriminated among JA-varying plants previously exposed to virus-free MED. However, both virus-free and viruliferous MED preferred low-JA plant genotypes when choosing between plants that had both been previously exposed to viruliferous MED. The enhanced preference for low-JA genotypes appears linked to the volatile compound neophytadiene, which was found only in whitefly-infested plants and at concentrations inversely related to plant JA levels. CONCLUSIONS: Our findings illustrate how plant defense can interact with prior herbivory to affect both a plant virus and its whitefly vector, and confirm the induction of neophytadiene by MED. The apparent attraction of MED to neophytadiene may prove useful in pest detection and management.


Subject(s)
Antibiosis , Begomovirus/physiology , Cyclopentanes/metabolism , Hemiptera/physiology , Herbivory , Oxylipins/metabolism , Plant Diseases/virology , Solanum lycopersicum/physiology , Animals , Solanum lycopersicum/immunology , Solanum lycopersicum/virology , Plant Immunity , Plants, Genetically Modified/immunology , Plants, Genetically Modified/physiology , Plants, Genetically Modified/virology , Signal Transduction
19.
Int J Mol Sci ; 20(20)2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31600879

ABSTRACT

The whitefly (Bemisia tabaci), an important invasive pest that causes severe damage to crops worldwide, has developed resistance to a variety of insecticides. Carboxylesterases (COEs) are important multifunctional enzymes involved in the growth, development, and xenobiotic metabolism of insects. However, systematic studies on the COEs of B. tabaci are scarce. Here, 42 putative COEs in different functional categories were identified in the Mediterranean species of B. tabaci (B. tabaci MED) based on a genome database and neighbor-joining phylogeny. The expression patterns of the COEs were affected by the development of B. tabaci. The expression levels of six COEs were positively correlated with the concentration of imidacloprid to which B. tabaci adults were exposed. The mortality of B. tabaci MED adults fed dsBTbe5 (67.5%) and dsBTjhe2 (58.4%) was significantly higher than the adults fed dsEGFP (41.1%) when treated with imidacloprid. Our results provide a basis for functional research on COEs in B. tabaci and provide new insight into the imidacloprid resistance of B. tabaci.


Subject(s)
Carboxylic Ester Hydrolases/genetics , Genome-Wide Association Study , Hemiptera/enzymology , Hemiptera/genetics , Animals , Carboxylic Ester Hydrolases/metabolism , Gene Expression , Gene Expression Profiling , Gene Expression Regulation/drug effects , Genome, Insect , Genome-Wide Association Study/methods , Neonicotinoids/pharmacology , Nitro Compounds/pharmacology , Phylogeny , Transcriptome
20.
PLoS One ; 14(10): e0224213, 2019.
Article in English | MEDLINE | ID: mdl-31626674

ABSTRACT

The gut bacteria of insects positively influence the physiology of their host, however, the dynamics of this complicated ecosystem are not fully clear. To improve our understanding, we characterized the gut prokaryotic of Henosepilachna vigintioctopunctata that fed on two host plants, Solanum melongena (referred to as QZ hereafter) and Solanum nigrum (referred to as LK hereafter), by sequencing the V3-V4 hypervariable region of the 16S rRNA gene using the Illumina MiSeq system. The results revealed that the gut bacterial composition varied between specimens that fed on different host plants. The unweighted pair group method with arithmetic mean analyses and principal coordinate analysis showed that the bacterial communities of the LK and QZ groups were distinct. Four phyla (Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria) were present in all H. vigintioctopunctata gut samples. It is noteworthy that bacteria of the phylum Cyanobacteria were only found in the LK group, with a low relative abundance. Proteobacteria and Enterobacteriaceae were the predominant phylum and family, respectively, in both the LK and QZ groups. Linear discriminant analysis effect size (LEfSe) analyses showed that the QZ group enriched the Bacilli class and Lactococcus genus; while the LK group enriched the Alphaproteobacteria class and Ochrobactrum genus. PICRUSt analysis showed that genes predicted to be involved in xenobiotic biodegradation and metabolism, metabolism of other amino acids, signaling molecules, and interaction were significantly higher in the QZ group. Genes predicted to be involved in the metabolism of cofactors and vitamins were significantly higher in the LK group. Furthermore, the complexity of the network structure and the modularity were higher in the LK group than in the QZ group. This is the first study to characterize the gut bacteria of H. vigintioctopunctat, our results demonstrate that the two host plants tested had a considerable impact on bacterial composition in the gut of H. vigintioctopunctata and that the bacterial communities were dominated by relatively few taxa.


Subject(s)
Bacteria/isolation & purification , Coleoptera/physiology , Gastrointestinal Microbiome , Animals , Bacteria/genetics , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Cluster Analysis , Coleoptera/growth & development , Coleoptera/microbiology , Discriminant Analysis , Firmicutes/genetics , Firmicutes/isolation & purification , Proteobacteria/genetics , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Sequence Analysis, DNA , Solanum melongena/parasitology , Solanum nigrum/parasitology , Xenobiotics/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...