Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
World J Gastroenterol ; 30(19): 2575-2602, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38817665

ABSTRACT

BACKGROUND: Lactate, previously considered a metabolic byproduct, is pivotal in cancer progression and maintaining the immunosuppressive tumor microenvironment. Further investigations confirmed that lactate is a primary regulator, introducing recently described post-translational modifications of histone and non-histone proteins, termed lysine lactylation. Pancreatic adenocarcinomas are characterized by increased glycolysis and lactate accumulation. However, our understanding of lactylation-related genes in pancreatic adenocarcinomas remains limited. AIM: To construct a novel lactylation-related gene signature to predict the survival of patients with pancreatic cancer. METHODS: RNA-seq and clinical data of pancreatic adenocarcinoma (PDAC) were obtained from the GTEx (Genotype-Tissue Expression) and TCGA (The Cancer Genome Atlas) databases via Xena Explorer, and GSE62452 datasets from GEO. Data on lactylation-related genes were obtained from publicly available sources. Differential expressed genes (DEGs) were acquired by using R package "DESeq2" in R. Univariate COX regression analysis, LASSO Cox and multivariate Cox regressions were produced to construct the lactylation-related prognostic model. Further analyses, including functional enrichment, ESTIMATE, and CIBERSORT, were performed to analyze immune status and treatment responses in patients with pancreatic cancer. PDAC and normal human cell lines were subjected to western blot analysis under lactic acid intervention; two PDAC cell lines with the most pronounced lactylation were selected. Subsequently, RT-PCR was employed to assess the expression of LRGs genes; SLC16A1, which showed the highest expression, was selected for further investigation. SLC16A1-mediated lactylation was analyzed by immunofluorescence, lactate production analysis, colony formation, transwell, and wound healing assays to investigate its role in promoting the proliferation and migration of PDAC cells. In vivo validation was performed using an established tumor model. RESULTS: In this study, we successfully identified 10 differentially expressed lactylation-related genes (LRGs) with prognostic value. Subsequently, a lactylation-related signature was developed based on five OS-related lactylation-related genes (SLC16A1, HLA-DRB1, KCNN4, KIF23, and HPDL) using Lasso Cox hazard regression analysis. Subsequently, we evaluated the clinical significance of the lactylation-related genes in pancreatic adenocarcinoma. A comprehensive examination of infiltrating immune cells and tumor mutation burden was conducted across different subgroups. Furthermore, we demonstrated that SLC16A1 modulates lactylation in pancreatic cancer cells through lactate transport. Both in vivo and in vitro experiments showed that decreasing SLC16A1 Level and its lactylation significantly inhibited tumor progression, indicating the potential of targeting the SLC16A1/Lactylation-associated signaling pathway as a therapeutic strategy against pancreatic adenocarcinoma. CONCLUSION: We constructed a novel lactylation-related prognostic signature to predict OS, immune status, and treatment response of patients with pancreatic adenocarcinoma, providing new strategic directions and antitumor immunotherapies.


Subject(s)
Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms , Tumor Microenvironment , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Prognosis , Cell Line, Tumor , Tumor Microenvironment/immunology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Protein Processing, Post-Translational , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/mortality , Adenocarcinoma/immunology , Adenocarcinoma/metabolism , Lactic Acid/metabolism , Symporters/genetics , Symporters/metabolism , Cell Proliferation/genetics , Gene Expression Profiling , Male , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/therapy , Female , Animals , Transcriptome
2.
World J Hepatol ; 15(6): 725-740, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37397935

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) or metabolic (dysfunction)-associated fatty liver disease is the leading cause of chronic liver diseases defined as a disease spectrum comprising hepatic steatosis, non-alcoholic steatohepatitis (NASH), liver fibrosis, cirrhosis, and hepatic carcinoma. NASH, characterized by hepatocyte injury, steatosis, inflammation, and fibrosis, is associated with NAFLD prognosis. Ductular reaction (DR) is a common compensatory reaction associated with liver injury, which involves the hepatic progenitor cells (HPCs), hepatic stellate cells, myofibroblasts, inflammatory cells (such as macrophages), and their secreted substances. Recently, several studies have shown that the extent of DR parallels the stage of NASH and fibrosis. This review summarizes previous research on the correlation between DR and NASH, the potential interplay mechanism driving HPC differentiation, and NASH progression.

SELECTION OF CITATIONS
SEARCH DETAIL
...