Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 103(4): 103413, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38442558

ABSTRACT

Photoperiod is an important environmental factor that influences seasonal reproduction behavior in birds. Birds translate photoperiodic information into neuroendocrine signals through deep brain photoreceptors (DBPs). OPN5 has been considered candidate DBPs involved in regulating seasonal reproduction in birds. We found that OPN5 could mediate light to regulate the follicle development in ducks. In this study, we further verified the effect of OPN5 on follicular development in Shan Partridge ducks by immunizing against the extracellular domain (ECD) of OPN5. We investigated the specific regulatory mechanism of photoperiod mediated by OPN5 on the reproductive activity of ducks. The trial randomly divided 120 Shan Partridge ducks into 3 groups with different treatments: the immunization of OPN5 group was done at d0, d15, d30, and d40 with 1 mL of vaccine containing OPN5 protein (thus containing 1, 1, 0.5, and 0.5 mg of OPN5-KLH protein), and the control group (CS and CL groups) was injected at the same time with the same dose of OPN5-uncontained blank vaccine. The group of CS (900 lux), OPN5 (600 lux), and CL (600 lux) lasted for 40 d in 12 L:12 D photoperiods, respectively. Then, the groups of CS, OPN5, and CL subsequently received 12 L:12 D, 12 L:12 D, and 17 L:7 D light treatments for 33 d, respectively. The ducks were caged in 3 constant rooms with the same feeding conditions for each group, free water, and limited feeding (150 g per duck each day). Duck serum and tissue samples were collected at d 40, d 62, and d 73 (n = 12). It was found that before prolonged light, the group of immunization (group OPN5) and the group of strong light intensity (group CS) were higher than the group of CL in egg production. Subsequent to prolonged light, the group CL in egg production rose about the same as the group immunization, while the strong light group (group CS) was lower. Group OPN5 increased the ovarian index of ducks, and both the immunization of group OPN5 and group CL (extended light) increased the thickness of the granular layer and promoted the secretion of E2, P4, LH, and PRL hormones. Compared with group CS, group CL and OPN5 increased the mRNA level and protein expression of OPN5 in the hypothalamus on d 62 and d 73 (P < 0.05). The gene or protein expression patterns of GnRH, TRH, TSHß, DIO2, THRß, VIP, and PRL were positively correlated with OPN5, whereas the gene expression patterns of GnIH and DIO3 were negatively correlated with OPN5. The results showed that immunization against OPN5 could activate the corresponding transmembrane receptors to promote the expression of OPN5, up-regulate the expression of TSHß and DIO2, and then regulate the HPG axis-related genes to facilitate the follicular development of Shan Partridge ducks. In addition, in this experiment, prolonging the photoperiod or enhancing the light intensity could also enhance follicle development, but the effect was not as significant as immunizing against OPN5. Our results will offer beneficial data and more supportive shreds of evidence in favor of elucidating the role of OPN5 in relation to photoperiods and reproduction.


Subject(s)
Photoperiod , Vaccines , Animals , Ducks/physiology , Chickens , Reproduction , Immunization/veterinary
2.
Anim Reprod ; 19(3): e20220038, 2022.
Article in English | MEDLINE | ID: mdl-36189166

ABSTRACT

Photoperiod is an important environmental factor affecting animal physiological function. Melatonin is an endogenous hormone that plays an important role in circadian and seasonal (or cyclical) rhythms and seasonal reproduction in mammals. To investigate the effects of melatonin on the reproductive performance of adult male mice under different photoperiods, sixty mice were randomly allotted to six groups: control (Light Dark, 12 L:12 D), control plus melatonin (MLD, 12 L:12 D), 24-hour continuous light (LL, 24 L:0 D), 24-hour continuous light plus melatonin (MLL 24 L:0 D), constant darkness (DD, 0 L:24 D), and constant darkness plus melatonin (MDD, 0 L:24 D). Normal saline (100 µL) was injected into the LD, LL, and DD groups at noon each day; the MLD, MLL, and MDD groups were injected with melatonin (1 mg/mL; 2 mg/kg·body weigh). After 24 hours of prolonged light exposure, testis morphology decreased, convoluted seminiferous tubules became sparse, the diameter of convoluted seminiferous tubules decreased, and the level of sex hormones decreased. After the administration of exogenous melatonin, testicular morphology and sex hormone levels decreased in the MLD group under normal light conditions. In the MLL group, the testicular tissue morphology returned to normal, the diameter of convoluted tubules increased, the hormone levels of LH (Luteinizing hormone) and MTL (melatonin) significantly increased (P<0.05), and th0e gene expressions of LHß and Mtnr1A (Melatonin receptors 1A) increased. There was almost no difference in the MDD group under continuous darkness. In conclusion, melatonin can damage the reproductive performance of male mice under normal light conditions, while exogenous melatonin can alleviate and protect the testicular injury of male mice under continuous light conditions.

3.
Poult Sci ; 101(10): 102024, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35986948

ABSTRACT

This study sought to understand the regulation mechanism of OPN5 through the TSH-DIO2/DIO3 pathway mediated photoperiod on the breeding activity of short-day breeding birds. In this study, the reproductive activity of Magang goose was regulated by artificial light, and the reproductive activity of the ganders were determined according to the daily laying rate of female geese. The testicular development and the serum reproductive hormone concentrations of ganders were measured during the reproductive period (d 0), the reproductive degeneration period (d 13 and 27) and the resting period (d 45). The mRNA and protein expression patterns of OPN5, the HPG axis reproductive genes, and TSH-DIO2/DIO3 pathway related genes were examined. Results showed that the laying rate of geese and the gonadal indices (GSI) decreased gradually after the photoperiod increased. Histological observation found that the spermatogenic function of the testis was normal on d 0 and 13, while degeneration occurred by d 27 and 45. Serum testosterone, FSH, and LH concentration showed a slight increase on d 13, followed by a sharp decrease on d 27 and 45 (P < 0.01), while PRL concentrations were low on d 0 and 13, and increased rapidly on d 27 and 45 (P < 0.01).The expression pattern of GnRH, FSH, LH, and THRß mRNA were similar, with high levels on d 0 and 13 and a decreasing trend on d 27 and 45 (P < 0.05 or P < 0.01); and GnRHR mRNA levels were higher on d 13 (P < 0.05), but then had decreased by d 27 and 45 (P < 0.01). The expression pattern of GnIH and GnIHR was similar, which was opposite to that of GnRHR. VIP, PRL, and PRLR increased gradually and peaked on d 45 (P < 0.01). The expression trend of TRH, TSHß, and DIO2 was similar to that of GnRHR, and the expression abundance increased on d 13, and then decreased on d 27 and 45. GnRH protein expression was significantly higher than during the other 3 periods (P < 0.01) while the GnIH protein levels were extremely low on d 0, had gradually increased by d 13, and significantly increased by d 27 and 45 (P < 0.01). The protein expression trends of THR and DIO2 were similar to that of GNIH. DIO3 protein expression was low on d 0 and 13, and increased by d 27 and 45. These results suggest that when the photoperiod increased, the hypothalamus OPN5 gene and protein were upregulated and the pituitary TSHß, TSHR, and hypothalamus THRß, TRH, and DIO2 were downregulated, and thus the reproductive activity of geese was inhibited.


Subject(s)
Geese , Photoperiod , Animals , Chickens/metabolism , Female , Follicle Stimulating Hormone , Geese/physiology , Gonadotropin-Releasing Hormone , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproduction/physiology , Testosterone , Thyrotropin
4.
J Interferon Cytokine Res ; 38(8): 333-340, 2018 08.
Article in English | MEDLINE | ID: mdl-30052119

ABSTRACT

Double-stranded RNA-dependent protein kinase (PKR) is an important antiviral IFN-stimulated gene (ISGs) that recognizes double-stranded RNA (dsRNA) and mediates inhibition of translation initiation and protein synthesis in various types of viral infection. In this study, the complete coding sequence (CDS) of goose PKR (goPKR) is identified and characterized. The open reading frame (ORF) of goPKR is 1668 bp, which encodes a polypeptide of 555 amino acids. The sequence identity results demonstrate that the goose PKR is most closely related to duck PKR gene, with nucleotide identities of 91.6%, whereas nucleotide identity of the goose PKR to chicken, human, and mouse PKR is 76.4%, 51.9%, and 52.0%, respectively. Interestingly, the deduced amino acid sequence of goose PKR contains 3 main structure domains, including 2 double-strand RNA-binding motif (dsRBM) domains and one serine/threonine protein kinase domain. This is similar to the chicken and mammals, whereas it is different from duck PKR protein, which contains only one dsRBM1 domain and one serine/threonine protein kinase domain. Quantitative real-time PCR analysis indicates that goose PKR mRNA is widely expressed in all sampled tissues. It is highly expressed in the blood, spleen, lung, and bursa of Fabricius and jejunum and is slightly expressed in heart, muscle, trachea, and brain. The results of confocal microscopy suggest that PKR-EGFP is mainly localized in the cytoplasm, and overexpression of goPKR protein significantly reduces Newcastle disease virus (NDV) replication (viral copies and viral titer) in goose embryo fibroblasts. These findings show that goose PKR is an important antiviral ISG, involved in the antiviral innate immune defense to NDV in geese.


Subject(s)
Antiviral Agents/pharmacology , Geese/genetics , Gene Expression Profiling , Newcastle disease virus/drug effects , Peptides/pharmacology , eIF-2 Kinase/genetics , eIF-2 Kinase/pharmacology , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Newcastle disease virus/metabolism , Peptides/chemistry , Peptides/metabolism , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Virus Replication/drug effects , eIF-2 Kinase/chemistry , eIF-2 Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...