Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Cancer ; 24(1): 328, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468240

ABSTRACT

The sialic acid binding Ig like lectin 15 (Siglec-15) was previously identified as tumor immune suppressor gene in some human cancers with elusive molecular mechanism to be elucidated. The continuous focus on both clinical and basic biology of bladder cancer leads us to characterize aberrant abundance of BACH1-IT2 associating with stabilization of Siglec-15, which eventually contributes to local immune suppressive microenvironment and therefore tumor advance. This effect was evidently mediated by miR-4786-5p. BACH1-IT2 functions in this scenario as microRNA sponge, and competitively conceals miR-4786 and up-regulates cancer cell surface Siglec-15. The BACH1-IT2-miR-4786-Siglec-15 axis significantly influences activation of immune cell co-culture. In summary, our data highlights the critical involvements of BACH1-IT2 and miR-4786 in immune evasion in bladder cancer, which hints the potential for both therapeutic and prognostic exploitation.


Subject(s)
MicroRNAs , Urinary Bladder Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Urinary Bladder Neoplasms/genetics , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Tumor Microenvironment/genetics , Basic-Leucine Zipper Transcription Factors/genetics
2.
J Transl Med ; 21(1): 42, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36691055

ABSTRACT

BACKGROUND: Accurate pathological diagnosis of invasion depth and histologic grade is key for clinical management in patients with bladder cancer (BCa), but it is labour-intensive, experience-dependent and subject to interobserver variability. Here, we aimed to develop a pathological artificial intelligence diagnostic model (PAIDM) for BCa diagnosis. METHODS: A total of 854 whole slide images (WSIs) from 692 patients were included and divided into training and validation sets. The PAIDM was developed using the training set based on the deep learning algorithm ScanNet, and the performance was verified at the patch level in validation set 1 and at the WSI level in validation set 2. An independent validation cohort (validation set 3) was employed to compare the PAIDM and pathologists. Model performance was evaluated using the area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value and negative predictive value. RESULTS: The AUCs of the PAIDM were 0.878 (95% CI 0.875-0.881) at the patch level in validation set 1 and 0.870 (95% CI 0.805-0.923) at the WSI level in validation set 2. In comparing the PAIDM and pathologists, the PAIDM achieved an AUC of 0.847 (95% CI 0.779-0.905), which was non-inferior to the average diagnostic level of pathologists. There was high consistency between the model-predicted and manually annotated areas, improving the PAIDM's interpretability. CONCLUSIONS: We reported an artificial intelligence-based diagnostic model for BCa that performed well in identifying invasion depth and histologic grade. Importantly, the PAIDM performed admirably in patch-level recognition, with a promising application for transurethral resection specimens.


Subject(s)
Artificial Intelligence , Urinary Bladder Neoplasms , Humans , Algorithms , Predictive Value of Tests
3.
Front Oncol ; 12: 843735, 2022.
Article in English | MEDLINE | ID: mdl-35299747

ABSTRACT

Background: With the rapid development of technology, artificial intelligence (AI) has been widely used in the diagnosis and prognosis prediction of a variety of diseases, including prostate cancer. Facts have proved that AI has broad prospects in the accurate diagnosis and treatment of prostate cancer. Objective: This study mainly summarizes the research on the application of artificial intelligence in the field of prostate cancer through bibliometric analysis and explores possible future research hotspots. Methods: The articles and reviews regarding application of AI in prostate cancer between 1999 and 2020 were selected from Web of Science Core Collection on August 23, 2021. Microsoft Excel 2019 and GraphPad Prism 8 were applied to analyze the targeted variables. VOSviewer (version 1.6.16), Citespace (version 5.8.R2), and a widely used online bibliometric platform were used to conduct co-authorship, co-citation, and co-occurrence analysis of countries, institutions, authors, references, and keywords in this field. Results: A total of 2,749 articles were selected in this study. AI-related research on prostate cancer increased exponentially in recent years, of which the USA was the most productive country with 1,342 publications, and had close cooperation with many countries. The most productive institution and researcher were the Henry Ford Health System and Tewari. However, the cooperation among most institutions or researchers was not close even if the high research outputs. The result of keyword analysis could divide all studies into three clusters: "Diagnosis and Prediction AI-related study", "Non-surgery AI-related study", and "Surgery AI-related study". Meanwhile, the current research hotspots were "deep learning" and "multiparametric MRI". Conclusions: Artificial intelligence has broad application prospects in prostate cancer, and a growing number of scholars are devoted to AI-related research on prostate cancer. Meanwhile, the cooperation among various countries and institutions needs to be strengthened in the future. It can be projected that noninvasive diagnosis and accurate minimally invasive treatment through deep learning technology will still be the research focus in the next few years.

4.
J Natl Cancer Inst ; 114(2): 220-227, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34473310

ABSTRACT

BACKGROUND: Cystoscopy plays an important role in bladder cancer (BCa) diagnosis and treatment, but its sensitivity needs improvement. Artificial intelligence has shown promise in endoscopy, but few cystoscopic applications have been reported. We report a Cystoscopy Artificial Intelligence Diagnostic System (CAIDS) for BCa diagnosis. METHODS: In total, 69 204 images from 10 729 consecutive patients from 6 hospitals were collected and divided into training, internal validation, and external validation sets. The CAIDS was built using a pyramid scene parsing network and transfer learning. A subset (n = 260) of the validation sets was used for a performance comparison between the CAIDS and urologists for complex lesion detection. The diagnostic accuracy, sensitivity, specificity, and positive and negative predictive values and 95% confidence intervals (CIs) were calculated using the Clopper-Pearson method. RESULTS: The diagnostic accuracies of the CAIDS were 0.977 (95% CI = 0.974 to 0.979) in the internal validation set and 0.990 (95% CI = 0.979 to 0.996), 0.982 (95% CI = 0.974 to 0.988), 0.978 (95% CI = 0.959 to 0.989), and 0.991 (95% CI = 0.987 to 0.994) in different external validation sets. In the CAIDS vs urologists' comparisons, the CAIDS showed high accuracy and sensitivity (accuracy = 0.939, 95% CI = 0.902 to 0.964; sensitivity = 0.954, 95% CI = 0.902 to 0.983) with a short latency of 12 seconds, much more accurate and quicker than the expert urologists. CONCLUSIONS: The CAIDS achieved accurate BCa detection with a short latency. The CAIDS may provide many clinical benefits, from increasing the diagnostic accuracy for BCa, even for commonly misdiagnosed cases such as flat cancerous tissue (carcinoma in situ), to reducing the operation time for cystoscopy.


Subject(s)
Cystoscopy , Urinary Bladder Neoplasms , Artificial Intelligence , Cystoscopy/methods , Humans , Predictive Value of Tests , Urinary Bladder Neoplasms/diagnostic imaging , Urinary Bladder Neoplasms/pathology
5.
EBioMedicine ; 72: 103592, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34619639

ABSTRACT

BACKGROUND: Alterations in the brain cortical structures of patients with chronic kidney disease (CKD) have been reported; however, the cause has not been determined yet. Herein, we used Mendelian randomization (MR) to reveal the causal effect of kidney damage on brain cortical structure. METHODS: Genome-wide association studies summary data of estimated glomerular filtration rate (eGFR) in 480,698 participants from the CKDGen Consortium were used to identify genetically predicted eGFR. Data from 567,460 individuals from the CKDGen Consortium were used to assess genetically determined CKD; 302,687 participants from the UK Biobank were used to evaluate genetically predicted albuminuria. Further, data from 51,665 patients from the ENIGMA Consortium were used to assess the relationship between genetic predisposition and reduced eGFR, CKD, and progressive albuminuria with alterations in cortical thickness (TH) or surficial area (SA) of the brain. Magnetic resonance imaging was used to measure the SA and TH globally and in 34 functional regions. Inverse-variance weighted was used as the primary estimate whereas MR Pleiotropy RESidual Sum and Outlier, MR-Egger and weighted median were used to detect heterogeneity and pleiotropy. FINDINGS: At the global level, albuminuria decreased TH (ß = -0.07 mm, 95% CI: -0.12 mm to -0.02 mm, P = 0.004); at the functional level, albuminuria reduced TH of pars opercularis gyrus without global weighted (ß = -0.11 mm, 95% CI: -0.16 mm to -0.07 mm, P = 3.74×10-6). No pleiotropy was detected. INTERPRETATION: Kidney damage causally influences the cortex structure which suggests the existence of a kidney-brain axis. FUNDING: This study was supported by the Science and Technology Planning Project of Guangdong Province (Grant No. 2020A1515111119 and 2017B020227007), the National Key Research and Development Program of China (Grant No. 2018YFA0902803), the National Natural Science Foundation of China (Grant No. 81825016, 81961128027, 81772719, 81772728), the Key Areas Research and Development Program of Guangdong (Grant No. 2018B010109006), Guangdong Special Support Program (2017TX04R246), Grant KLB09001 from the Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, and Grants from the Guangdong Science and Technology Department (2020B1212060018).


Subject(s)
Brain/pathology , Kidney/pathology , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Albuminuria/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Glomerular Filtration Rate/genetics , Humans , Mendelian Randomization Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...