Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Dev Cell ; 52(4): 461-476.e4, 2020 02 24.
Article in English | MEDLINE | ID: mdl-31928972

ABSTRACT

Phosphoinositides, diacylglycerolpyrophosphate, ceramide-1-phosphate, and phosphatidic acid belong to a unique class of membrane signaling lipids that contain phosphomonoesters in their headgroups having pKa values in the physiological range. The phosphomonoester headgroup of phosphatidic acid enables this lipid to act as a pH biosensor as changes in its protonation state with intracellular pH regulate binding to effector proteins. Here, we demonstrate that binding of pleckstrin homology (PH) domains to phosphatidylinositol 4-phosphate (PI4P) in the yeast trans-Golgi network (TGN) is dependent on intracellular pH, indicating PI4P is a pH biosensor. pH biosensing by TGN PI4P in response to nutrient availability governs protein sorting at the TGN, likely by regulating sterol transfer to the TGN by Osh1, a member of the conserved oxysterol-binding protein (OSBP) family of lipid transfer proteins. Thus, pH biosensing by TGN PI4P allows for direct metabolic regulation of protein trafficking and cell growth.


Subject(s)
Carrier Proteins/metabolism , Glucose/pharmacology , Phosphatidylinositol Phosphates/metabolism , Receptors, Steroid/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , trans-Golgi Network/metabolism , Humans , Hydrogen-Ion Concentration , Protein Transport , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Signal Transduction , Sweetening Agents/pharmacology , trans-Golgi Network/drug effects
2.
J Mol Biol ; 431(4): 825-841, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30625288

ABSTRACT

One obstacle in de novo protein design is the vast sequence space that needs to be searched through to obtain functional proteins. We developed a new method using structural profiles created from evolutionarily related proteins to constrain the simulation search process, with functions specified by atomic-level ligand-protein binding interactions. The approach was applied to redesigning the BIR3 domain of the X-linked inhibitor of apoptosis protein (XIAP), whose primary function is to suppress the cell death by inhibiting caspase-9 activity; however, the function of the wild-type XIAP can be eliminated by the binding of Smac peptides. Isothermal calorimetry and luminescence assay reveal that the designed XIAP domains can bind strongly with the Smac peptides but do not significantly inhibit the caspase-9 proteolytic activity in vitro compared with the wild-type XIAP protein. Detailed mutation assay experiments suggest that the binding specificity in the designs is essentially determined by the interplay of structural profile and physical interactions, which demonstrates the potential to modify apoptosis pathways through computational design.


Subject(s)
Apoptosis/genetics , Proteins/genetics , Signal Transduction/genetics , Amino Acid Sequence , Caspase 9/genetics , Caspase 9/metabolism , Crystallography, X-Ray/methods , Humans , Ligands , Mutation/genetics , Oligopeptides/genetics , Oligopeptides/metabolism , Protein Binding/genetics , Protein Structure, Tertiary/genetics , Proteins/metabolism , Proteolysis , X-Linked Inhibitor of Apoptosis Protein/genetics
3.
Anal Chem ; 90(5): 3079-3082, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29336549

ABSTRACT

Top-down hydrogen-deuterium exchange (HDX) analysis using electron capture or transfer dissociation Fourier transform mass spectrometry (FTMS) is a powerful method for the analysis of secondary structure of proteins in solution. The resolution of the method is a function of the degree of fragmentation of backbone bonds in the proteins. While fragmentation is usually extensive near the N- and C-termini, electron capture (ECD) or electron transfer dissociation (ETD) fragmentation methods sometimes lack good coverage of certain regions of the protein, most often in the middle of the sequence. Ultraviolet photodissociation (UVPD) is a recently developed fast-fragmentation technique, which provides extensive backbone fragmentation that can be complementary in sequence coverage to the aforementioned electron-based fragmentation techniques. Here, we explore the application of electrospray ionization (ESI)-UVPD FTMS on an Orbitrap Fusion Lumos Tribrid mass spectrometer to top-down HDX analysis of proteins. We have incorporated UVPD-specific fragment-ion types and fragment-ion mixtures into our isotopic envelope fitting software (HDX Match) for the top-down HDX analysis. We have shown that UVPD data is complementary to ETD, thus improving the overall resolution when used as a combined approach.

4.
Proteomics Clin Appl ; 12(2)2018 03.
Article in English | MEDLINE | ID: mdl-28895300

ABSTRACT

PURPOSE: Targeted proteomics using MRM with stable-isotope-labeled internal-standard (SIS) peptides is the current method of choice for protein quantitation in complex biological matrices. Better quantitation can be achieved with the internal standard-addition method, where successive increments of synthesized natural form (NAT) of the endogenous analyte are added to each sample, a response curve is generated, and the endogenous concentration is determined at the x-intercept. Internal NAT-addition, however, requires multiple analyses of each sample, resulting in increased sample consumption and analysis time. EXPERIMENTAL DESIGN: To compare the following three methods, an MRM assay for 34 high-to-moderate abundance human plasma proteins is used: classical internal SIS-addition, internal NAT-addition, and external NAT-addition-generated in buffer using NAT and SIS peptides. Using endogenous-free chicken plasma, the accuracy is also evaluated. RESULTS: The internal NAT-addition outperforms the other two in precision and accuracy. However, the curves derived by internal vs. external NAT-addition differ by only ≈3.8% in slope, providing comparable accuracies and precision with good CV values. CONCLUSIONS AND CLINICAL RELEVANCE: While the internal NAT-addition method may be "ideal", this new external NAT-addition can be used to determine the concentration of high-to-moderate abundance endogenous plasma proteins, providing a robust and cost-effective alternative for clinical analyses or other high-throughput applications.


Subject(s)
Proteomics/standards , Amino Acid Sequence , Blood Proteins/chemistry , Blood Proteins/metabolism , Humans , Reference Standards
5.
Biochim Biophys Acta Proteins Proteom ; 1865(7): 755-767, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28017863

ABSTRACT

In this work, we combined the use of two MALDI matrices (quercetin and 9-aminoacridine), a recently developed new matrix coating technique - matrix coating assisted by an electric field (MCAEF), and matrix-assisted laser desorption/ionization - Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICRMS) to detect and image endogenous compounds in the cancerous and non-cancerous regions of three human prostate cancer (stage II) tissue specimens. After three rounds of imaging data acquisitions (i.e., quercetin for positive and negative ion detection and 9-aminoacridine for negative ion detection), and metabolite identification, a total of 1091 metabolites including 1032 lipids and 59 other metabolites were routinely detected and successfully localized. Of these compounds, 250 and 217 were only detected in either the cancerous or the non-cancerous regions respectively, although we cannot rule out the presence of these metabolites at concentrations below the detection limit. In addition, 152 of the other 624 metabolites showed differential distributions (p<0.05, t-test) between the two regions of the tissues. Further studies on a larger number of clinical specimens will need to be carried out to confirm this large number of apparently cancer-related metabolites. The successful determination of the spatial locations and abundances of these endogenous biomolecules indicated significant metabolism abnormalities - e.g., increased energy charge and under-expression of neutral acyl glycerides, in the prostate cancer samples. To our knowledge, this work has resulted in MALDI-MS imaging of the largest group of metabolites in prostate cancer thus far and demonstrated the importance of using complementary matrices for comprehensive metabolomic imaging by MALDI-MS. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.


Subject(s)
Metabolome/physiology , Prostatic Neoplasms/metabolism , Cyclotrons , Fourier Analysis , Humans , Limit of Detection , Lipids/physiology , Male , Metabolomics/methods , Middle Aged , Quercetin/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , alpha-Glucosidases/metabolism
6.
Biochim Biophys Acta ; 1864(12): 1801-1808, 2016 12.
Article in English | MEDLINE | ID: mdl-27569733

ABSTRACT

Hydrogen/deuterium exchange (HDX) coupled with mass spectrometry (MS) is a powerful technique for higher-order structural characterization of antibodies. Although the peptide-based bottom-up HDX approach and the protein-based top-down HDX approach have complementary advantages, the work done so far on biosimilars has involved only one or the other approach. Herein we have characterized the structures of two bevacizumab (BEV) biosimilars and compared them to the reference BEV using both methods. A sequence coverage of 87% was obtained for the heavy chain and 74% for the light chain in the bottom-up approach. The deuterium incorporation behavior of the peptic peptides from the three BEVs were compared side by side and showed no differences at various HDX time points. Top-down experiments were carried out using subzero temperature LC-MS, and the deuterium incorporation of the intact light chain and heavy chain were obtained. Top-down ETD was also performed to obtain amino acid-level HDX information that covered 100% of the light chain, but only 50% coverage is possible for the heavy chain. Consistent with the intact subunit level data, no differences were observed in the amino acid level HDX data. All these results indicate that there are no differences between the three BEV samples with respect to their high-order structures. The peptide level information from the bottom-up approach, and the residue level and intact subunit level information from the top-down approach were complementary and covered the entire antibody.


Subject(s)
Bevacizumab/chemistry , Biosimilar Pharmaceuticals/chemistry , Amino Acid Sequence , Bevacizumab/genetics , Deuterium Exchange Measurement/methods , Immunoglobulin Fragments/chemistry , Immunoglobulin Fragments/genetics , Pepsin A , Tandem Mass Spectrometry/methods
7.
J Proteomics ; 134: 138-143, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26675311

ABSTRACT

Phosphorylation is a central mechanism for regulating the structure and function of proteins in the cell, but accurate characterization of a specific protein phospho-species is challenging due to the difficulty of separating it from other species, as well as the limitations of the traditional structural methods. By using selective top-down ETD, we were able to identify six specific phospho-species of calmodulin (CaM). Phosphorylation of CaM at four sites by CK2 was found to follow a sequential order, with Ser81 as the first, Thr79 as the second, and Ser101 or Thr117 as the third. By combining top-down ETD with hydrogen/deuterium exchange, the impact of phosphorylation on CaM's structure was elucidated in a species-specific manner. A negligible structural effect was observed for mono-phosphorylation at Ser81, or di-phosphorylation at Ser81-Thr79, or tri-phosphorylation at Ser81-Thr79-Ser101 or Ser81-Thr79-Thr117. However, it was found that a significant phosphorylation-induced conformational change in CaM was caused by simultaneous phosphorylation at Ser101 and Thr117. The dramatically increased deuterium incorporation for residues between 102 and 119 strongly suggests that the structure of this region has been greatly changed.


Subject(s)
Calmodulin/chemistry , Phosphoproteins/chemistry , Humans , Phosphorylation , Protein Conformation , Recombinant Proteins/chemistry
8.
Chem Sci ; 7(2): 1480-1486, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-29910905

ABSTRACT

Although X-ray crystallography is the "gold standard" method for protein higher-order structure analysis, the challenges of antibody crystallization and the time-consuming data analysis involved make this technique unsuitable for routine structural studies of antibodies. In addition, crystallography cannot be used for the structural characterization of an antibody in solution, under conditions where antibody drugs are active. Intact antibodies are also too large and too complex for NMR. Top-down mass spectrometry coupled to hydrogen/deuterium exchange (HDX) is a powerful tool for high-resolution protein structural characterization, but its success declines rapidly as protein size increases. Here we report for the first time a new hybrid "middle-down" HDX approach that overcomes this limitation through enabling the nonspecific enzyme pepsin to perform specific restricted digestion at low pH prior to HPLC separation at subzero temperatures and online electron transfer dissociation (ETD). Three large specific peptic fragments (12 to 25 kDa) were observed from the heavy chain and light chain of a therapeutic antibody Herceptin, together with a few smaller fragments from the middle portion of the heavy chain. The average amino-acid resolutions obtained by ETD were around two residues, with single-residue resolution in many regions. This middle-down approach is also applicable to other antibodies. It provided HDX information on the entire light chain, and 95.3% of the heavy chain, representing 96.8% of the entire antibody (150 kDa). The structural effects of glycosylation on Herceptin were determined at close-to-single residue level by this method.

9.
Anal Chem ; 87(12): 5884-90, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-25927482

ABSTRACT

Higher-order structural characterization plays an important role in many stages of therapeutic antibody production. Herein, we report a new top-down mass spectrometry approach for characterizing the higher-order structure of intact antibodies, by combining hydrogen/deuterium exchange (HDX), subzero temperature chromatography, and electron transfer dissociation on the Orbitrap mass spectrometer. Individual IgG domain-level deuteration information was obtained for 6 IgG domains on Herceptin (HER), which included the antigen binding sites. This is the first time that top-down HDX has been applied to an intact protein as large as 150 kDa, which has never been done before on any instrument. Ligand-binding induced structural differences in HER were determined to be located only on the variable region of the light chain. Global glycosylation profile of antibodies and HDX property of the glycoforms were also determined by accurate intact mass measurements. Although the presence of disulfide bonds prevent the current approach from being able to obtain amino acid level structural information within the disulfide-linked regions, the advantages such as minimal sample manipulation, fast workflow, very low level of back exchange, and simple data analysis, make it well-suited for fast comparative structural evaluation of intact antibodies.


Subject(s)
Trastuzumab/chemistry , Deuterium Exchange Measurement , Electron Transport , Immunoglobulin G/chemistry , Mass Spectrometry , Models, Molecular , Molecular Structure
10.
Chem Sci ; 6(1): 729-738, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-28706636

ABSTRACT

A novel technique, termed matrix coating assisted by an electric field (MCAEF), for enhancing tissue imaging by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was developed in this study. In this technique a static and uniform electric field is applied to sliced tissue sections during matrix spray-coating, resulting in the enrichment of positively or negatively chargeable analytes in the MALDI matrix layer. Experimental results show that MCAEF not only increased the sensitivity of lipid and protein detection across the board in the subsequent MALDI-MS analyses, but also resulted in successful imaging of a larger number of analytes. MALDI imaging enhancement with MCAEF was observed for various tissues (rat liver, rat brain, and porcine adrenal gland) and with different MALDI matrices (e.g., quercetin, 2-mercaptobenzothiazole, dithranol, 9-aminoacridine, and sinapinic acid) and the sensitivity increases were independent of the solvent compositions and pH values of the matrix solutions. Taking rat brain as an example, MCAEF led to the on-tissue detection and imaging of 648 identified lipids by combining positive and negative ion detection by MALDI-Fourier transform ion cyclotron resonance MS and with quercetin as the matrix, as compared to only 344 lipids without MCAEF. For protein imaging, up to 232 protein signals were successfully detected in rat brain tissue sections by MALDI-time-of-flight MS within a mass range of 3500 to 37 000 Da, as compared to 119 without MCAEF. MCAEF also enabled the detection of higher molecular-weight proteins. These results demonstrate the advantages of MCAEF for overall performance improvements in MALDI imaging and we believe that this technique has the potential to become a standard practice for MALDI tissue imaging.

11.
J Am Chem Soc ; 136(37): 13065-71, 2014 Sep 17.
Article in English | MEDLINE | ID: mdl-25152011

ABSTRACT

Characterization of the higher-order structure and structural dynamics of proteins is crucial for in-depth understanding of their functions. Amide hydrogen/deuterium exchange (HDX), monitored by mass spectrometry (MS), is now a popular technique for measuring protein higher-order structural changes. Although the proteolysis-based HDX-MS approach is most commonly used, the "top-down" approach, which fragments intact proteins directly using electron-based dissociation, is becoming an important alternative and has several advantages. However, the commonly used top-down strategies are direct-infusion based and thus can only be used with volatile buffers. This has meant that the "top-down" approach could not be used for studying proteins under physiological conditions-the very conditions which are often very important for preserving a protein's native structure and function. More complex proteins such as those with disulfide bonds present another challenge. Therefore, there is significant interest in developing novel top-down HDX methods that are applicable to all types of protein samples. In this paper, we show how top-down electron capture dissociation and subzero temperature HPLC can be combined and used for this purpose. This method keeps the back-exchange level as low as 2% and has no limitations in terms of protein type and sample solution conditions. Close to single-residue level protein structural information can be generated. The new method is validated through comparison with NMR data using calmodulin as a model protein. Its capability of determining structural changes in therapeutic antibodies (Herceptin) is also demonstrated.


Subject(s)
Antibodies, Monoclonal, Humanized/chemistry , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Amides/chemistry , Calmodulin/chemistry , Cold Temperature , Deuterium Exchange Measurement/methods , Humans , Models, Molecular , Protein Conformation , Recombinant Proteins/chemistry , Trastuzumab
12.
Proteomics ; 14(10): 1130-40, 2014 May.
Article in English | MEDLINE | ID: mdl-24644084

ABSTRACT

Pilot Project #1--the identification and characterization of human histone H4 proteoforms by top-down MS--is the first project launched by the Consortium for Top-Down Proteomics (CTDP) to refine and validate top-down MS. Within the initial results from seven participating laboratories, all reported the probability-based identification of human histone H4 (UniProt accession P62805) with expectation values ranging from 10(-13) to 10(-105). Regarding characterization, a total of 74 proteoforms were reported, with 21 done so unambiguously; one new PTM, K79ac, was identified. Inter-laboratory comparison reveals aspects of the results that are consistent, such as the localization of individual PTMs and binary combinations, while other aspects are more variable, such as the accurate characterization of low-abundance proteoforms harboring >2 PTMs. An open-access tool and discussion of proteoform scoring are included, along with a description of general challenges that lie ahead including improved proteoform separations prior to mass spectrometric analysis, better instrumentation performance, and software development.


Subject(s)
Proteomics/methods , Chromatography, Liquid/methods , Cluster Analysis , HeLa Cells , Histones/analysis , Histones/chemistry , Humans , Mass Spectrometry/methods , Pilot Projects , Protein Processing, Post-Translational , Software
13.
Proteomics ; 14(10): 1249-58, 2014 May.
Article in English | MEDLINE | ID: mdl-24574185

ABSTRACT

Rapid development in biopharmaceuticals has put high demands on analytical tools that can provide accurate and comprehensive characterization of protein drugs, including biosimilars. Although the enzyme digestion based "bottom-up" approach is usually the method of choice for this purpose, it only gives peptide-level information and sequence coverage is often incomplete. In this work, we used top-down MS with electron capture dissociation (ECD) to characterize both the primary and higher order structures of a therapeutic protein interferon and its variants. Accurate mass measurement at the intact protein level combined with top-down ECD fragmentation enabled unambiguous protein sequence confirmation and identification of all PTMs. Combining hydrogen/deuterium exchange and rapid disulfide reduction with top-down ECD on the LC time scale, we have investigated the differences in higher order structure between the protein variants, as well as the impact of PTMs on protein conformation.


Subject(s)
Biosimilar Pharmaceuticals/chemistry , Deuterium Exchange Measurement/methods , Interferons/chemistry , Mass Spectrometry/methods , Amino Acid Sequence , Biosimilar Pharmaceuticals/analysis , Disulfides , Humans , Interferons/analysis , Models, Molecular , Molecular Sequence Data , Protein Processing, Post-Translational , Recombinant Proteins/analysis , Recombinant Proteins/chemistry
14.
Anal Chem ; 86(1): 638-46, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24341451

ABSTRACT

Adrenal glands synthesize and release functional zone-specific steroid and catecholamine hormones to regulate mammalian stress responses. Lipids such as sphingolipids have been shown to control the steroid hormone biosynthesis in adrenal glands, indicating their important roles in endocrine organs. Molecular imaging by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a well-established analytical technique for determining both the spatial location and the relative abundances of various lipids on tissue. To better understand the overall roles of different lipid classes that play in the mammalian adrenal glands, it is necessary to comprehensively determine the spatial distributions of various lipids in the different functional zones of adrenal glands. However, the potential of this technique has not been fully reached, considering there are thousands of lipid species in a cell or tissue. To achieve this, we used quercetin as a MALDI matrix for negative ion detection of endogenous lipids on tissue sections of porcine adrenal glands by MALDI-Fourier-transform ion cyclotron resonance (FTICR) MS. As a result of these experiments, 409 endogenous compounds were detected in the negative ion mode. Combining both the positive and negative ion detection led to successful determination of the spatial distribution patterns of 555 unique endogenous compounds that were identified as 544 lipid entities and 11 nonlipid metabolites. Many classes of these lipids showed distinct distribution patterns in different functional zones of the adrenal gland. To the best of our knowledge, this work presents the largest group of lipid entities that have been analyzed in a single MS imaging study so far, and comprehensive profiles of the spatial distributions of lipids in porcine adrenal glands are shown here for the first time.


Subject(s)
Adrenal Glands/chemistry , Fourier Analysis , Lipids/analysis , Quercetin/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Adrenal Glands/metabolism , Animals , Lipid Metabolism/physiology , Swine
15.
PLoS One ; 8(10): e77283, 2013.
Article in English | MEDLINE | ID: mdl-24204787

ABSTRACT

Chagas disease is a trypanosomiasis whose causative agent is the protozoan parasite Trypanosoma cruzi, which is transmitted to humans by hematophagous insects known as triatomines and affects a large proportion of South America. The digestive tract of the insect vectors in which T. cruzi develops constitutes a dynamic environment that affects the development of the parasite. Thus, we set out to investigate the chemical composition of the triatomine intestinal tract through a metabolomics approach. We performed Direct Infusion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry on fecal samples of three triatomine species (Rhodnius prolixus, Triatoma infestans, Panstrongylus megistus) fed with rabbit blood. We then identified groups of metabolites whose frequencies were either uniform in all species or enriched in each of them. By querying the Human Metabolome Database, we obtained putative identities of the metabolites of interest. We found that a core group of metabolites with uniform frequencies in all species represented approximately 80% of the molecules detected, whereas the other 20% varied among triatomine species. The uniform core was composed of metabolites of various categories, including fatty acids, steroids, glycerolipids, nucleotides, sugars, and others. Nevertheless, the metabolic fingerprint of triatomine feces differs depending on the species considered. The variable core was mainly composed of prenol lipids, amino acids, glycerolipids, steroids, phenols, fatty acids and derivatives, benzoic acid and derivatives, flavonoids, glycerophospholipids, benzopyrans, and quinolines. Triatomine feces constitute a rich and varied chemical medium whose constituents are likely to affect T. cruzi development and infectivity. The complexity of the fecal metabolome of triatomines suggests that it may affect triatomine vector competence for specific T. cruzi strains. Knowledge of the chemical environment of T. cruzi in its invertebrate host is likely to generate new ways to understand the factors influencing parasite proliferation as well as methods to control Chagas disease.


Subject(s)
Insect Vectors/metabolism , Metabolome , Panstrongylus/metabolism , Rhodnius/metabolism , Triatoma/metabolism , Trypanosoma cruzi/metabolism , Animals , Cyclotrons , Feces/chemistry , Feces/parasitology , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/parasitology , Host Specificity , Host-Parasite Interactions , Humans , Insect Vectors/parasitology , Mass Spectrometry/methods , Panstrongylus/parasitology , Rabbits , Rhodnius/parasitology , Triatoma/parasitology , Trypanosomiasis/parasitology
16.
PLoS Negl Trop Dis ; 7(8): e2381, 2013.
Article in English | MEDLINE | ID: mdl-23967366

ABSTRACT

Despite considerable efforts over the last decades, our understanding of leprosy pathogenesis remains limited. The complex interplay between pathogens and hosts has profound effects on host metabolism. To explore the metabolic perturbations associated with leprosy, we analyzed the serum metabolome of leprosy patients. Samples collected from lepromatous and tuberculoid patients before and immediately after the conclusion of multidrug therapy (MDT) were subjected to high-throughput metabolic profiling. Our results show marked metabolic alterations during leprosy that subside at the conclusion of MDT. Pathways showing the highest modulation were related to polyunsaturated fatty acid (PUFA) metabolism, with emphasis on anti-inflammatory, pro-resolving omega-3 fatty acids. These results were confirmed by eicosanoid measurements through enzyme-linked immunoassays. Corroborating the repertoire of metabolites altered in sera, metabonomic analysis of skin specimens revealed alterations in the levels of lipids derived from lipase activity, including PUFAs, suggesting a high lipid turnover in highly-infected lesions. Our data suggest that omega-6 and omega-3, PUFA-derived, pro-resolving lipid mediators contribute to reduced tissue damage irrespectively of pathogen burden during leprosy disease. Our results demonstrate the utility of a comprehensive metabonomic approach for identifying potential contributors to disease pathology that may facilitate the development of more targeted treatments for leprosy and other inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/metabolism , Fatty Acids, Unsaturated/metabolism , Host-Parasite Interactions , Leprosy/immunology , Leprosy/pathology , Metabolome , Adolescent , Adult , Aged , Aged, 80 and over , Child , Female , Humans , Male , Middle Aged , Plasma/chemistry , Skin/chemistry , Skin/pathology , Young Adult
17.
Anal Chem ; 85(15): 7566-73, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23895229

ABSTRACT

The discovery of new matrices that are suitable for in situ analysis of low molecular-weight compounds by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is an important technological aspect of tissue imaging. In this work, ten natural flavonoid compounds, including flavone and nine of its mono- or polyhydroxyl-substituted analogues (3-hydroxyflavone, 5-hydroxyflavone, 3,7-dihydroxyflavone, chrysin, 7,3',4'-trihydroxyflavone, fisetin, luteolin, quercetin, and morin) were evaluated as potential MALDI matrices for the profiling and imaging of endogenous lipids in mouse liver, using a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer with a 355-nm Nd:YAG UV laser, in the positive ion mode. When an electronic sprayer was used for matrix coating and with a high-pH (0.1-0.5% ammonia hydroxide) matrix solvent, eight of the ten compounds, all of which had at least one OH group at the C3 or C5 position of the flavone structure, enabled the successful detection of 77 to 161 phospholipids and other lipids. The best results were observed with two penta-OH flavones (i.e., quercertin and morin). Taking quercetin as an example, this matrix showed characteristics superior to those of commonly used MALDI matrices, such as DHB (2,5-dihydroxybenzoic acid), CHCA (α-cyano-4-hydroxycinnamic acid), and 2-mercaptobenzothiazole (2-MBT). These characteristics were: µm-sized matrix crystals, uniform matrix coating, low volatility in the high vacuum (~10(-7) mbar) source, good chemical stability, low yield of matrix-related ions, low matrix consumption, low power threshold for laser desorption/ionization, and improved safety of handling. The use of quercetin led to improved lipid imaging, with 212 lipids being successfully imaged from rat brain in a single experiment and with asymmetric distributions of some lipids in left and right brain hippocampus being observed for the first time.


Subject(s)
Flavones/chemistry , Molecular Imaging , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Brain/cytology , Brain/metabolism , Lasers , Lipid Metabolism , Liver/cytology , Liver/metabolism , Mice , Rats
18.
Proteomics ; 13(6): 974-81, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23319428

ABSTRACT

High-resolution structural characterization of posttranslationally modified proteins represents a challenge for traditional structural biology methods such as crystallography and NMR. In this study, we have used top-down hydrogen/deuterium exchange MS (HDX-MS) with precursor ion selection and electron capture dissociation to determine the impact of oxidative modification on calmodulin (CaM) at an average resolution of 2.5 residues, with complete sequence coverage. The amide deuteration status of native CaM determined by this method correlates well with previously reported crystallographic and NMR data. In contrast, methionine oxidation caused almost complete deuteration of all residues in the protein in 10 s. The oxidative-modification-induced secondary and tertiary structure loss can be largely recovered upon calcium ligation, which also resulted in a substantial increase of amide protection in three of the four calcium-binding loops in oxidatively modified CaM (CaMox ). However, the structure of α-helix VI is not restored by cofactor binding. These results are discussed in terms of different target binding and activation capabilities displayed by CaM and CaMox . The isoform-specific top-down HDX structural analysis strategy demonstrated in this study should be readily applicable to other oxidatively modified proteins and other types of PTMs, and may help decipher the structure and function of specific protein isoforms.


Subject(s)
Protein Processing, Post-Translational , Spectrometry, Mass, Electrospray Ionization/methods , Binding Sites , Calmodulin/chemistry , Deuterium Exchange Measurement , Fourier Analysis , Methionine , Models, Molecular , Oxidation-Reduction , Protein Isoforms/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary
19.
J Proteomics ; 81: 31-42, 2013 Apr 09.
Article in English | MEDLINE | ID: mdl-23085224

ABSTRACT

Structural proteomics approaches are valuable tools, particularly in cases where the exact mechanisms of protein conformational changes or the structures of proteins and protein complexes cannot be elucidated by traditional structural biology techniques like X-ray crystallography or NMR methods. Each structural proteomics method can provide a different set of data, all of which can be used as structural constraints for modeling the protein. We have applied a combination of limited proteolysis, surface modification, chemical crosslinking, and hydrogen/deuterium exchange for the characterization of structural differences in prion proteins in native monomeric and in the aggregated ß-oligomeric states. Data from these multiple proteomics approaches are in remarkable agreement in pointing to the rearrangement of the beta sheet 1-helix1-beta sheet 2-helix 2 (ß1-H1-ß2-H2) region as a major conformational change between the native and oligomeric prion protein forms. This data is also consistent with the ß1-H1-ß2 loop moving away from the H2-H3 core during the prion protein conversion. This is an example of how complementary data from multiple structural proteomics approaches can provide novel insights into the three-dimensional structures of proteins and protein complexes. This article is part of a Special Issue entitled: From protein structures to clinical applications.


Subject(s)
Models, Molecular , Prions/chemistry , Proteomics , Animals , Cricetinae , Mesocricetus , Prions/metabolism , Protein Structure, Secondary , Proteolysis
20.
Eur J Mass Spectrom (Chichester) ; 18(2): 251-67, 2012.
Article in English | MEDLINE | ID: mdl-22641729

ABSTRACT

Structural proteomics is the application of protein chemistry and modern mass spectrometric techniques to problems such as the characterization of protein structures and assemblies and the detailed determination of protein-protein interactions. The techniques used in structural proteomics include crosslinking, photoaffinity labeling, limited proteolysis, chemical protein modification and hydrogen/deuterium exchange, all followed by mass spectrometric analysis. None of these methods alone can provide complete structural information, but a "combination" of these complementary approaches can be used to provide enough information for answering important biological questions. Structural proteomics can help to determine, for example, the detailed structure of the interfaces between proteins that may be important drug targets and the interactions between proteins and ligands. In this review, we have tried to provide a brief overview of structural proteomics methodologies, illustrated with examples from our laboratory and from the literature.


Subject(s)
Mass Spectrometry/methods , Proteins/chemistry , Proteomics/methods , Cross-Linking Reagents , Deuterium Exchange Measurement , Ligands , Peptide Mapping , Photoaffinity Labels , Protein Conformation , Proteins/analysis , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...