Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 274: 125934, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38574533

ABSTRACT

Nowadays, novel and efficient signal amplification strategy in electrochemiluminescence (ECL) platform is urgently needed to enhance the sensitivity of biosensor. In this work, the dual ECL signal enhancement strategy was constructed by the interactions of Pd nanoparticles attached covalent organic frameworks (Pd NPs@COFs) with tris (bipyridine) ruthenium (RuP) and Exonuclease III (Exo.III) cycle reaction. Within this strategy, the COFs composite was generated from the covalent reaction between 2-nitro-1,4-phenylenediamine (NPD) and trialdehyde phloroglucinol (Tp), and then animated by glutamate (Glu) to attach the Pd NPs. Next, the "signal on" ECL biosensor was constructed by the coordination assembly of thiolation capture DNA (cDNA) onto the Pd NPs@COFs modified electrode. After the aptamer recognition of progesterone (P4) with hairpin DNA 1 (HP1), the Exo. III cycle reaction was initiated with HP2 to generate free DNA, which hybridized with cDNA to form double-stranded DNA (dsDNA). For that, the RuP was embedded into the groove of dsDNA and achieved the ultrasensitive detection of P4 with a lower limit of detection (LOD) down to 0.45 pM, as well as the excellent selectivity and stability. This work expands the COFs-based materials application in ECL signal amplification and valuable DNA cyclic reaction in biochemical testing field.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Exodeoxyribonucleases , Metal Nanoparticles , Metal-Organic Frameworks , Palladium , Progesterone , Metal Nanoparticles/chemistry , Metal-Organic Frameworks/chemistry , Palladium/chemistry , Progesterone/analysis , Progesterone/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism , Limit of Detection , Luminescent Measurements/methods , Humans , DNA/chemistry
2.
Clin Chim Acta ; 535: 7-12, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35944700

ABSTRACT

BACKGROUND: Thalassemia is one of the most common hemoglobinopathies. Thalassemia is mainly caused by the loss and/or deficiency of one or more globin chains in hemoglobin. The copy number variant (CNV) of α-globin gene is one of the important factors affecting the clinical phenotype of ß-thalassemia. The precise detection for this type of variation is needed. METHODS: Peripheral blood of a 33-year-old man and his family members were collected. Complete blood counts and serum iron levels were measured for participants. Genomic DNA was extracted from all family members. Routine genetic analysis of thalassemia was performed to determine the genotype. Additional PCR-electrophoresis and Multiplex ligation dependent probe amplification (MLPA) were conducted. Single-molecule real-time technology(SMRT) was then performed as a validation assay and further characterization of the variant for family members. RESULTS: PCR-electrophoresis and MLPA found a new variant, but the exact genotype could not be determined. At last, SMRT identified the new variant as a rearrangement of the α-globin gene cluster named αHKαα (NC_000016.9:g.169818_174075dup169818_174075dup173302_177105del), which contained both the -α3.7 and ααααanti4.2 crossover junctions. Carriers of the novel CNV show normal clinical phenotype according to the hematological results. CONCLUSION: We have identified an unreported CNV (αHKαα) in α-globin gene cluster. The novel CNV not only demonstrates the accuracy and efficiency of our combining strategy in detecting unknown CNVs, but also enriched the variant spectrum of thalassemia.

SELECTION OF CITATIONS
SEARCH DETAIL
...