Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 24(1): 29, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245708

ABSTRACT

BACKGROUND: The ATP-dependent DNA ligase Lig E is present as an accessory DNA ligase in numerous proteobacterial genomes, including many disease-causing species. Here we have constructed a genomic Lig E knock-out in the obligate human pathogen Neisseria gonorrhoeae and characterised its growth and infection phenotype. RESULTS: This demonstrates that N. gonorrhoeae Lig E is a non-essential gene and its deletion does not cause defects in replication or survival of DNA-damaging stressors. Knock-out strains were partially defective in biofilm formation on an artificial surface as well as adhesion to epithelial cells. In addition to in vivo characterisation, we have recombinantly expressed and assayed N. gonorrhoeae Lig E and determined the crystal structure of the enzyme-adenylate engaged with DNA substrate in an open non-catalytic conformation. CONCLUSIONS: These findings, coupled with the predicted extracellular/ periplasmic location of Lig E indicates a role in extracellular DNA joining as well as providing insight into the binding dynamics of these minimal DNA ligases.


Subject(s)
DNA Ligases , Neisseria gonorrhoeae , Humans , DNA Ligase ATP/genetics , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/metabolism , DNA Ligases/genetics , DNA Ligases/chemistry , DNA Ligases/metabolism , DNA , Biofilms
2.
J R Soc Interface ; 20(208): 20230337, 2023 11.
Article in English | MEDLINE | ID: mdl-37935360

ABSTRACT

Red edge excitation shift (REES) spectroscopy relies on the unique emission profiles of fluorophore-solvent interactions to profile protein molecular dynamics. Recently, we reported the use of REES to compare the stability of 32 polymorphic IgG antibodies natively containing tryptophan reporter fluorophores. Here, we expand on this work to investigate the sensitivity of REES to variations in tryptophan content using a subset of IgG3 antibodies containing arginine to tryptophan polymorphisms. Structural analysis revealed that the additional tryptophan residues were situated in highly solvated environments. Subsequently, REES showed clear differences in fluorescence emission profiles when compared with the unmutated variants, thereby limiting direct comparison of their structural dynamics. These findings highlight the exquisite sensitivity of REES to minor variations in protein structure and tryptophan composition.


Subject(s)
Proteins , Tryptophan , Tryptophan/chemistry , Spectrometry, Fluorescence/methods
3.
Biotechnol Rep (Amst) ; 38: e00791, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36915646

ABSTRACT

Antigen-specific polyclonal immunoglobulins derived from the serum, colostrum, or milk of immunized ruminant animals have potential as scalable therapeutics for the control of viral diseases including COVID-19. Here we show that the immunization of sheep with fusions of the SARS-CoV-2 receptor binding domain (RBD) to ovine IgG2a Fc domains promotes significantly higher levels of antigen-specific antibodies compared to native RBD or full-length spike antigens. This antibody population contained elevated levels of neutralizing antibodies that suppressed binding between the RBD and hACE2 receptors in vitro. A second immune-stimulating fusion candidate, Granulocyte-macrophage colony-stimulating factor (GM-CSF), induced high neutralizing responses in select animals but narrowly missed achieving significance. We further demonstrated that the antibodies induced by these fusion antigens were transferred into colostrum/milk and possessed cross-neutralizing activity against diverse SARS-CoV-2 variants. Our findings highlight a new pathway for recombinant antigen design in ruminant animals with applications in immune milk production and animal health.

4.
Protein Sci ; 32(3): e4589, 2023 03.
Article in English | MEDLINE | ID: mdl-36759959

ABSTRACT

The constant regions of clinical monoclonal antibodies are derived from a select number of allotypes found in IgG subclasses. Despite a long-term acknowledgment that this diversity may impact both antibody function and developability, there is a lack of data on the stability of variants carrying these mutations. Here, we generated a panel of IgG1, IgG2, and IgG3 antibodies with 32 unique constant region alleles and performed a systematic comparison of stability using red edge excitation shift (REES). This technique exploits the fluorescent properties of tryptophan residues to measure antibody structural dynamics which predict flexibility and the propensity to unfold. Our REES measurements revealed broad stability differences between subclasses with IgG3 possessing the poorest overall stability. Further interrogation of differences between variants within each subclass enabled the high-resolution profiling of individual allotype stabilities. Crucially, these observed differences were not found to be linked to N297-linked glycan heterogeneity. Our work demonstrates diverse stabilities (and dynamics) for a range of naturally occurring constant domain alleles and the utility of REES as a method for rapid and sensitive antibody stability profiling, requiring only laboratory spectrophotometry equipment.


Subject(s)
Antibodies, Monoclonal , Immunoglobulin G , Immunoglobulin G/chemistry
5.
Sci Rep ; 11(1): 18693, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34548548

ABSTRACT

DNA ligases, the enzymes responsible for joining breaks in the phosphodiester backbone of DNA during replication and repair, vary considerably in size and structure. The smallest members of this enzyme class carry out their functions with pared-down protein scaffolds comprising only the core catalytic domains. Here we use sequence similarity network analysis of minimal DNA ligases from all biological super kingdoms, to investigate their evolutionary origins, with a particular focus on bacterial variants. This revealed that bacterial Lig C sequences cluster more closely with Eukaryote and Archaeal ligases, while bacterial Lig E sequences cluster most closely with viral sequences. Further refinement of the latter group delineates a cohesive cluster of canonical Lig E sequences that possess a leader peptide, an exclusively bacteriophage group of T7 DNA ligase homologs and a group with high similarity to the Chlorella virus DNA ligase which includes both bacterial and viral enzymes. The structure and function of the bacterially-encoded Chlorella virus homologs were further investigated by recombinantly producing and characterizing, the ATP-dependent DNA ligase from Burkholderia pseudomallei as well as determining its crystal structure in complex with DNA. This revealed that the enzyme has similar activity characteristics to other ATP-dependent DNA ligases, and significant structural similarity to the eukaryotic virus Chlorella virus including the positioning and DNA contacts of the binding latch region. Analysis of the genomic context of the B. pseudomallei ATP-dependent DNA ligase indicates it is part of a lysogenic bacteriophage present in the B. pseudomallei chromosome representing one likely entry point for the horizontal acquisition of ATP-dependent DNA ligases by bacteria.


Subject(s)
Adenosine Triphosphate/metabolism , Bacteriophages/enzymology , Burkholderia pseudomallei/enzymology , DNA Ligases/metabolism , Viral Proteins/chemistry , Amino Acid Sequence , DNA Ligases/chemistry , DNA Ligases/genetics , Evolution, Molecular , Protein Conformation , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...