Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 465: 133133, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38043431

ABSTRACT

A microfluidic concentration gradient colorimetric detection system consisting of a microfluidic concentration gradient colorimetric detection chip, a self-built colorimetric signal acquisition box and a self-written smartphone APP was constructed for the rapid, in-field and visual quantitative detection of nitrite. Specifically, nitrite with initial concentration of C0 can be automatically diluted into 8 concentration gradients characterized by arithmetic series, and the concentrations are 0, 0.20 C0, 0.33 C0, 0.46 C0, 0.59 C0, 0.72 C0, 0.86 C0 and C0. The colorimetric signal acquisition box avoided the interference of light spots on data acquisition. Under the optimal experimental conditions, the quantitative detection of nitrite was achieved by the proposed two-step colorimetric method based on the inhibition of AuNPs signal amplification, and the limit of detection (LOD) was 0.14 mg/L. The microfluidic concentration gradient colorimetric detection system was able to detect nitrite as low as 0.43 mg/L and showed a good specificity. The practical application was investigated by analyzing 10 actual samples of river and lake water, pure water and tap water. The recoveries of the microfluidic concentration gradient colorimetric detection system ranged from 94.92% to 105.60%, which indicates that the method had a good application prospect in the detection of practical samples.

2.
Toxics ; 11(6)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37368613

ABSTRACT

Food security is a global issue, since it is closely related to human health. Antibiotics play a significant role in animal husbandry owing to their desirable broad-spectrum antibacterial activity. However, irrational use of antibiotics has caused serious environmental pollution and food safety problems; thus, the on-site detection of antibiotics is in high demand in environmental analysis and food safety assessment. Aptamer-based sensors are simple to use, accurate, inexpensive, selective, and are suitable for detecting antibiotics for environmental and food safety analysis. This review summarizes the recent advances in aptamer-based electrochemical, fluorescent, and colorimetric sensors for antibiotics detection. The review focuses on the detection principles of different aptamer sensors and recent achievements in developing electrochemical, fluorescent, and colorimetric aptamer sensors. The advantages and disadvantages of different sensors, current challenges, and future trends of aptamer-based sensors are also discussed.

3.
Food Chem ; 408: 135218, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36563621

ABSTRACT

An enzyme-free, sensitive, and convenient approach was reported for the P-nitrophenyl substituent organophosphorus pesticides (NSOPs) of paraoxon-methyl (PM), paraoxon-ethyl (PE), parathion-methyl (PTM) and parathion-ethyl (PTE)) by indirectly quantification of the 4-nitrophenol (4-NP, hydrolysis product of the NSOPs). NaOH instead of hydrolase/nanozyme was applied, and temperature, pH, ultrasound was investigated to improve the NSOPs hydrolysis. Under the optimized conditions, the hydrolysis efficiencies were up to 99.9 %, 99.9 %, 99.6 %, 96.0 % for PM (10 min), PE (30 min), PTM (90 min) and PTE (120 min), based on which a low detection limits of 0.06 (PM), 0.07 (PE), 0.06 (PTM) and 0.07 (PTE) ppb were calculated with the 4-NP detection limit (0.03 ppb). Furthermore, the method exhibited good performance for the NSOPs with recoveries from 88.87 % to 100.33 % in real samples. This indirect approach offered an ultrasensitive alternative for the NSOPs detection, which holds great potential in practical application for the assessment of food safety and environmental risks.


Subject(s)
Methyl Parathion , Parathion , Pesticides , Paraoxon , Organophosphorus Compounds
4.
Front Plant Sci ; 13: 981494, 2022.
Article in English | MEDLINE | ID: mdl-36247584

ABSTRACT

Extensive research has been conducted on plant protection unmanned aerial vehicle (UAV) chemical application technology in recent years owing to its importance as a means of pest and disease control. UAV spraying in orchards faces the drawback of drift risk and can be hazardous to non-targeted crops, humans, and the environment. A detailed and systematic analysis must be performed to determine the uniformity and drift risk of plant UAV sprays. In this study, a peach orchard is sprayed with a plant-protection UAV at three different flight velocities and we evaluate the combined pesticide deposition performance of the canopy, ground loss, downwind ground drift, and airborne drift. Additionally, the droplet size and coverage rate in the canopy are calculated by using water-sensitive paper. The results demonstrate that there is significant difference in the droplet size at flight velocities of 1-3 m/s. The droplet size in the lower canopy is slightly smaller than those in the middle and upper parts. Increasing the flight velocity helps the pesticide droplets to spread and penetrate the canopy. However, it also causes a non-uniform pesticide deposition, reduced effective coverage ratio and effective density ratio. Among the three pesticides used in the experiment, imidacloprid exhibits the best deposition efficiency. The deposition amount and normalized deposition amount in the canopy were the highest at a flight velocity of 2 m/s, accompanied by a lower ground loss under the canopy. The highest near-field ground drift is observed at a velocity of 1 m/s, and the far-field airborne drift is highest at 3 m/s. Lastly, this study provides a reference for the commercial application of plant-protection UAVs.

5.
Front Nutr ; 9: 891302, 2022.
Article in English | MEDLINE | ID: mdl-35685882

ABSTRACT

Geographical indications of agricultural products are characterized by high quality and regional attributes, while they are more likely to be counterfeited by similar products from nearby regions. Accurate discrimination of origin on small geographical scales is extremely important for geographical indications of agricultural products to avoid food fraud. In this study, a widely targeted metabolomics based on ultra-high-performance liquid chromatography-tandem mass spectrometry combined with multivariate statistical analysis was used to distinguish the geographical origin of Pinggu Peach of Beijing and its two surrounding areas in Heibei province (China). Orthogonal partial least squares-discriminant analysis (OPLS-DA) based on 159 identified metabolites showed significant separation from Pinggu and the other adjacent regions. The number of the most important discriminant variables (VIP value >1) was up to 62, which contributed to the differentiation model. The results demonstrated that the metabolic fingerprinting combined with OPLS-DA could be successfully implemented to differentiate the geographical origin of peach from small-scale origins, thus providing technical support to further ensure the authenticity of geographical indication products. The greenness of the developed method was assessed using the Analytical GREEnness Metric Approach and Software (ARGEE) tool. It was a relatively green analytical method with room for improvement.

6.
Food Chem ; 354: 129578, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-33756331

ABSTRACT

A microfluidic colorimetric biosensor was developed using thiolated polystyrene microspheres (SH-PSs) for aggregating of gold nanoparticles (AuNPs), a novel hose-based microvalve for controlling the flow direction, and a smartphone imaging APP for monitoring colorimetric signals. Aptamer-PS-cysteamine conjugates were used as detection probes and reacted with Salmonella in samples. Complementary DNA - magnetic nanoparticle (cDNA - MNP) conjugates were used as capture probes, reacted with the free aptamer-PS-cysteamine conjugates. AuNPs were aggregated on the surface of Salmonella-aptamer-PS-cysteamine conjugates, resulting in a visible color change in the detection chamber, which indicating different concentrations of Salmonella. The limit of detection was low to 6.0 × 101 cfu/mL. The microfluidic biosensor exhibited a good specificity. It was evaluated by analyzing salad samples spiked with Salmonella. The recoveries ranged from 91.68% to 113.76%, which indicated its potential application in real samples.


Subject(s)
Biosensing Techniques/instrumentation , Colorimetry/instrumentation , Lab-On-A-Chip Devices , Polystyrenes/chemistry , Salmonella/isolation & purification , Smartphone , Vegetables/microbiology , Gold/chemistry , Limit of Detection , Metal Nanoparticles , Microspheres
7.
Anal Chim Acta ; 1092: 75-84, 2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31708035

ABSTRACT

A novel microfluidic colorimetric immunoassay was developed using gold nanoparticles (GNPs) for indicating different concentrations of altenariol monomethyl ether (AME), and UV spectroscopy and smart phone imaging for monitoring color change of the GNPs. Norland Optical Adhesive 81 (NOA 81) was used for simple and rapid fabrication of the microfluidic chip. AME-BSA modified magnetic nanoparticles (MNPs-BSA-AME) were used as capture probe and the self-magnetism for rapid separation and purification. AME monoclonal antibodies modified gold nanoparticles (GNP-mAbs) which dried on conjugate pad were used as detection probe and the self-catalyst for signal amplification. Under the optimal conditions, the proposed microfluidic colorimetric immunoassay was able to detect AME as low as 12.5 pg/mL for UV spectroscopy (574 nm), and 200 pg/mL for smart phone imaging. The total analysis time is less than 15 min. The immunoassay also has a lower cross-reactivity to AME analogues. It was also evaluated by analyzing fruit samples spiked with AME. The recoveries ranged from 91.19% to 94.15% for UV spectroscopy, and from 90.63% to 93.9% for smart phone imaging. This method can be used for rapid, sensitive, low-cost and portable point-of care testing (POCT) of other mycotoxins or haptens in food samples.


Subject(s)
Colorimetry/methods , Immunoassay/methods , Lactones/analysis , Microfluidic Analytical Techniques/methods , Mycotoxins/analysis , Smartphone , Antibodies, Immobilized/immunology , Antibodies, Monoclonal/immunology , Citrus/chemistry , Food Contamination/analysis , Fruit/chemistry , Gold/chemistry , Lab-On-A-Chip Devices , Lactones/immunology , Limit of Detection , Magnetite Nanoparticles/chemistry , Malus/chemistry , Metal Nanoparticles/chemistry , Microfluidic Analytical Techniques/instrumentation , Mycotoxins/immunology , Prunus avium/chemistry , Spectrophotometry, Ultraviolet/methods
8.
PLoS One ; 14(6): e0218325, 2019.
Article in English | MEDLINE | ID: mdl-31216306

ABSTRACT

Based on the high sensitivity and stable fluorescence of CdTe quantum dots (QDs) in conjunction with a specific DNA aptamer, the authors describe an aptamer-based fluorescence assay for the determination of Salmonella Typhimurium. The fluorescence detection and quantification of S. Typhimurium is based on a magnetic separation system, a combination of aptamer-coated Fe3O4 magnetic particles (Apt-MNPs) and QD-labeled ssDNA2 (complementary strand of the aptamer). Apt-MNPs are employed for the specific capture of S. Typhimurium. CdTe QD-labeled ssDNA2 was used as a signaling probe. Simply, the as-prepared CdTe QD-labeled ssDNA2 was first incubated with the Apt-MNPs to form the aptamer-ssDNA2 duplex. After the addition of S. Typhimurium, they could specifically bind the DNA aptamer, leading to cleavage of the aptamer-ssDNA2 duplex, accompanied by the release of CdTe QD-labeled DNA. Thus, an increased fluorescence signal can be achieved after magnetic removal of the Apt-MNPs. The fluorescence of CdTe QDs (λexc/em = 327/612 nm) increases linearly in the concentration range of 10 to 1010 cfu•mL-1, and the limit of detection is determined to be 1 cfu•mL-1. The detection process can be performed within 2 h and is successfully applied to the analysis of spiked food samples with good recoveries from 90% to 105%.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques , Salmonella Infections/diagnosis , Salmonella typhimurium/isolation & purification , Cadmium Compounds/chemistry , Ferrosoferric Oxide/chemistry , Fluorescence , Humans , Quantum Dots/chemistry , Salmonella Infections/microbiology , Salmonella typhimurium/pathogenicity , Tellurium/chemistry
9.
Mikrochim Acta ; 186(4): 221, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30847631

ABSTRACT

The authors describe a fluorometric immunoassay for alternariol monomethyl ether (AME). It is making use of magnetic nanoparticles and quenching of the fluorescence of mercaptopropionic acid-capped CdTe quantum dots (MPA-CdTe QDs) by H2O2. Catalase (CAT) was labeled with AME as a competitive antigen to competitively bind to magnetic nanoparticles carrying monoclonal antibodies (mAbs) with free AME in samples. The effects of the concentration and pH value of buffer, the concentrations of H2O2 and CAT-AME, and the incubation time of H2O2 and MPA-CdTe QDs were optimized. Under optimal conditions and in combination with magnetic separation, the quenching of the fluorescence of the MPA-CdTe QDs (excitation at 310 nm, emission at 599 nm) can be used to quantify AME with a detection limit of 0.25 pg·mL-1 and the linear range from 0.25 to 7.5 pg·mL-1. The immunoassay also has a lower cross-reactivity to AME analogues. It was evaluated by analyzing fruit samples spiked with AME. The recoveries from spiked fruits ranged from 87.2% to 92.0%. Graphical abstract Schematic presentation of a fluorometric immunoassay for alternariol monomethyl ether (AME) using magnetic nanoparticles (MNPs) for the rapid separation and purification. The method is based on quenching of the fluorescence of mercaptopropionic acid-capped CdTe quantum dots (MPA-CdTe QDs) by H2O2 for the fluorescence signal output, and on the use of catalase (CAT) with its high catalytic activity.

10.
Article in English | MEDLINE | ID: mdl-30871239

ABSTRACT

Consumption of foodstuffs is the most likely route for human exposure to heavy metals. This study was designed to investigate the toxic metals (cadmium (Cd), lead (Pb), chromium (Cr), arsenic (As), and mercury (Hg)) concentrations in different foodstuffs (cereals, vegetables, fruits, fish, and meat) and then estimate the potential health risks of toxic metals via consumption to the local residents in Beijing, China. Most of the selected toxic metal levels in the foodstuffs were lower than the maximum allowable concentrations of Pb, Cr, Cd, As, and Hg for Chinese foodstuffs recommended in the China National Food Safety Standard. The health risks associated with the toxic metals Pb, Cr, Cd, As, and Hg were assessed based on the target hazard quotients (THQs) proposed by the United States Environmental Protection Agency (US EPA). The THQ values of the foodstuffs varied and were 0.03⁻0.29 for Cr, 0.02⁻0.23 for Pb, 0.01⁻0.33 for Cd, 0.01⁻0.06 for As, and 0.00⁻0.04 for Hg, not exceeding the maximum level of 1. The total THQ (TTHQ) values were 0.88 for vegetables, 0.57 for cereals, 0.46 for meat, 0.32 for fish, and 0.07 for fruits. This indicates that the risk contribution from vegetable intake (38.8%) was significant in comparison to that from other foodstuffs. The TTHQ values were 0.96 for Cr, 0.54 for Pb, 0.50 for Cd, 0.19 for As, and 0.09 for Hg, suggesting that Cr was a major risk contributor (41.7%) for the local residents of Beijing, which should attract great attention. However, the THQ/TTHQ values were all below 1, suggesting no health risks to the local population through consumption. Furthermore, dietary weekly intakes (WIs) were also calculated and the values were all lower than the proposed limit of Provisional Tolerable Weekly Intakes (PTWI) established by the the Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO). This suggests no additional health risks as well as consistency with the THQ results.


Subject(s)
Dietary Exposure , Food Contamination/analysis , Metals, Heavy/analysis , Animals , Beijing , Edible Grain/chemistry , Fruit/chemistry , Humans , Meat/analysis , Risk Assessment , Seafood/analysis , Vegetables
11.
Anal Bioanal Chem ; 410(28): 7511-7521, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30317446

ABSTRACT

Alternariol monomethyl ether (AME) is one of the major Alternaria mycotoxins present in a wide range of fruits, vegetables, grains, and their products, and possesses the properties of mutagenicity and carcinogenicity. In this study, a simple, rapid, and highly sensitive colorimetric immunosensor based on magnetic nanoparticles (MNPs) was firstly developed for the detection of AME in fruit by nonaggregated gold nanoparticles (GNPs). AME-BSA-Fe3O4 MNP conjugates and free AME molecules in samples competitively bind with monoclonal antibody (mAb)-GNP conjugates. After magnetic separation, the UV absorbance of the nonaggregated GNP supernatant was measured directly. The absorption intensity was proportional to the concentration of AME in the sample. Carboxyl-group-modified AME, AME-bovine serum albumin (BSA) conjugates, anti-AME mAbs, AME-BSA-Fe3O4 MNP conjugates, and mAb-GNP conjugates were prepared and characterized. The effect of GNP sizes (16, 24, and 40 nm) on the colorimetric determination of AME was studied. Under optimized conditions, the limit of detection and the linear range for AME were 0.16 ng/mL and 0.08-0.48 ng/mL, respectively. Moreover, the colorimetric immunosensor developed has lower cross-reactivity with AME analogues. The recoveries of spiked fruits ranged from 80.6% to 90.7%. The colorimetric immunosensor developed provides a promising method for simple, rapid, highly sensitive, and highly specific detection of other mycotoxins in the field of food safety. Graphical abstract Competitive colorimetric immunosensor based on MNPs for the detection of AME by non-aggregated GNPs.


Subject(s)
Citrus/chemistry , Food Analysis/methods , Fruit/chemistry , Lactones/chemistry , Prunus avium/chemistry , Colorimetry , Immunoassay , Molecular Structure
12.
Rapid Commun Mass Spectrom ; 32(21): 1897-1904, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30085380

ABSTRACT

RATIONALE: The stable nitrogen isotopic composition of nitrate (NO3 - ) can be an effective tool to identify NO3 - sources and understand nitrogen cycling. However, the usefulness of this isotopic tool in environment research has been limited by complex analytical procedures for the nitrogen isotopic analysis of NO3 - . We aimed to develop a novel method for the simple and rapid measurement of the δ15 N value of NO3 - in water. METHODS: Water NO3 - was transformed into nitrobenzene for nitrogen isotopic analysis by gas chromatography-combustion-isotope ratio mass spectrometry (GC/C-IRMS). The derivatization procedure was optimized to maximize the nitrobenzene yield. 1.5-fold 98% sulfuric acid and 0.5-fold benzene with respect to the water sample were used to derive nitrobenzene with only 1 min of vortex at room temperature. The nitrobenzene derivatization product (dissolved in benzene) was then separated by GC, followed by combustion to N2 for δ15 N analysis by IRMS. RESULTS: The minimum amount of nitrogen required for accurate determination of the δ15 N value was 8.6 ng at an m/z 28 intensity of 150 mV. The standard deviation of the GC/C-IRMS method was ≤0.5‰ (three replicates) even at a low NO3 - concentration of 9.58 mg L-1 . The various standards and samples with different δ15 N values exhibited good agreement with the assigned δ15 N values obtained by using the proposed method. CONCLUSIONS: Compared with previous methods, the newly developed method provided shorter analysis time and easy operation, and eliminated the need for the removal of chloride and nitrite. The GC/C-IRMS derivatization method offers a fully operational tool for δ15 N measurement of NO3 - in water.

13.
Toxins (Basel) ; 9(10)2017 10 14.
Article in English | MEDLINE | ID: mdl-29036884

ABSTRACT

Mycotoxins are one of the main factors impacting food safety. Mycotoxin contamination has threatened the health of humans and animals. Conventional methods for the detection of mycotoxins are gas chromatography (GC) or liquid chromatography (LC) coupled with mass spectrometry (MS), or enzyme-linked immunosorbent assay (ELISA). However, all these methods are time-consuming, require large-scale instruments and skilled technicians, and consume large amounts of hazardous regents and solvents. Interestingly, a microchip requires less sample consumption and short analysis time, and can realize the integration, miniaturization, and high-throughput detection of the samples. Hence, the application of a microchip for the detection of mycotoxins can make up for the deficiency of the conventional detection methods. This review focuses on the application of a microchip to detect mycotoxins in foods. The toxicities of mycotoxins and the materials of the microchip are firstly summarized in turn. Then the application of a microchip that integrates various kinds of detection methods (optical, electrochemical, photo-electrochemical, and label-free detection) to detect mycotoxins is reviewed in detail. Finally, challenges and future research directions in the development of a microchip to detect mycotoxins are previewed.


Subject(s)
Food Contamination/analysis , Microchip Analytical Procedures/methods , Mycotoxins/analysis , Colorimetry , Electrochemical Techniques , Luminescent Measurements , Surface Plasmon Resonance
14.
Article in English | MEDLINE | ID: mdl-28805752

ABSTRACT

Human hair of different age groups and foodstuff samples were collected in Beijing, China. The concerned metals-Cd, Cr, Pb, As, and Hg-were analyzed, and the metal levels in relation to age, gender, and dietary intake were further assessed. Results showed the highest level of the metals was shown by Pb, with an average concentration of 1.557 ± 0.779 mg/kg, followed by Cr (0.782 ± 0.394), Hg (0.284 ± 0.094), As (0.127 ± 0.078), and Cd (0.071 ± 0.032), following a decreasing order of Pb > Cr > Hg > As > Cd, which were all below the upper limit of normal values in China. The heavy metal concentrations varied greatly among different age groups, and higher concentrations for Cd, Cr, Pb, and As appeared in female hair, whereas higher Hg concentration were found in male hair, suggesting that age and gender were not crucial factors for assessing metal concentrations in human hair. The ingestion of cereals and vegetables were the main route by which heavy metals in the environment create hazardous health effects for local inhabitants, but the estimated metal intakes through food consumption were all lower than the proposed limit of Provisional Tolerable Weekly Intake (PTWI), indicating that heavy metals posed no health risks for the inhabitants. Furthermore, little relationship was found between metal intakes and the corresponding metal levels in hair. Nevertheless, the results of this study can be used to analyze the internal heavy metal burden in the resident population of Beijing area and can also serve as reference for further studies.


Subject(s)
Arsenic/analysis , Environmental Pollutants/analysis , Food Contamination/analysis , Hair/chemistry , Metals, Heavy/analysis , Adolescent , Adult , Aged , Child , China , Edible Grain/chemistry , Female , Humans , Male , Middle Aged , Vegetables/chemistry , Young Adult
15.
Toxins (Basel) ; 9(5)2017 04 29.
Article in English | MEDLINE | ID: mdl-28468234

ABSTRACT

A rapid, portable, and semi-quantitative immunochromatographic strip was developed for rapid and visual detection of alternariol monomethyl ether (AME). For this purpose, the anti-AME monoclonal antibody (mAb) was prepared and identified. AME coupled to bovine serum albumin (BSA) via methyl 4-bromobutanoate was prepared as immunogen. The recoveries of AME in spiked cherry and orange fruits determined by competitive ELISA were 86.1% and 80.7%, respectively. A colloidal gold nanoparticle (CGN) and CGNs-mAb conjugate were synthesized, and on this basis, a competitive colloidal gold immunochromatographic strip was developed and applied to the detection of AME toxin in fruit samples. The intensity of red density of the test line (T line) is inversely proportional to AME concentration in the range 0.1-10 ng/mL. The visual limit of detection (LOD) of AME was found to be about 10 ng/mL. The semi-quantitative detection can be completed in 10 min. Moreover, the immunochromatographic strip has lower cross-reactivity with AME analogues, and it has a good stability performance (following 3 months of storage). Hence, the colloidal gold immunochromatographic strip could be used as a semi-quantitative tool for the on-site, rapid, and visual detection of AME in fruit.


Subject(s)
Chromatography, Affinity/methods , Food Contamination/analysis , Fruit/chemistry , Lactones/analysis , Animals , Antibodies, Monoclonal/immunology , Citrus sinensis , Gold Colloid , Immunoconjugates/immunology , Lactones/immunology , Limit of Detection , Metal Nanoparticles , Mice, Inbred BALB C , Ovalbumin/immunology , Prunus avium , Serum Albumin, Bovine/immunology
16.
Mikrochim Acta ; 185(1): 54, 2017 12 16.
Article in English | MEDLINE | ID: mdl-29594378

ABSTRACT

A chemiluminescence (CL) based assay is described for the determination of the environmental pollutant 2-hydroxyfluorene (2-HOFlu) which is found to inhibit the CL of a system composed of the G-quadruplex/hemin complex (a DNAzyme), H2O2, and luminol. The G-rich aptamer PW17 is transformed to a potassium(I)-stabilized G-quadruplex-hemin complex which displays peroxidase-like activity to catalyze the oxidation of luminol by H2O2 which is accompanied by strong blue CL emission. On addition of 2-HOFlu, it will participate in the G-quadruplex DNAzyme-mediated oxidation by H2O2. As a result, CL intensity is decreased. The difference in CL intensity (ΔI) before and after addition of 2-HOFlu serves as the signal for its quantitation. In water of pH 9.0, a linear relationship is found for the 1 nM to 1 µM concentration range, with a 0.2 nM detection limit. The assay is highly selective over other fluorene derivatives. It was successfully applied to the determination of 2-HOFlu in spiked lake water samples. The method is rapid, cost-effective and convenient. Conceivably, it has a wide scope in that it may be applied to other target pollutants for which G-quadruplexes are available. Graphical abstract A chemiluminescence (CL) assay is described for the determination of the environmental pollutant 2-hydroxyfluorene (2-HOFlu) based on the inhibition of the CL system composed of the G-quadruplex/hemin complex (a DNAzyme), H2O2, and luminol.


Subject(s)
DNA, Catalytic/chemistry , Fluorenes/analysis , G-Quadruplexes , Hydrogen Peroxide/chemistry , Luminescent Measurements/methods , Luminol/chemistry , Environmental Pollutants/analysis , Lakes/analysis , Molecular Probes/chemistry
17.
Anal Chim Acta ; 936: 222-8, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27566359

ABSTRACT

A label-free sensing assay for ethanolamine (EA) detection based on G-quadruplex-EA binding interaction is presented by using G-rich aptamer DNA (Ap-DNA) and electrochemical impedance spectroscopy (EIS). The presence of K(+) induces the Ap-DNA to form a K(+)-stabilized G-quadruplex structure which provides binding sites for EA. The sensing mechanism was further confirmed by circular dichroism (CD) spectroscopy and EIS measurement. As a result, the charge transfer resistance (RCT) is strongly increased as demonstrated by using the ferro/ferricyanide ([Fe(CN)6](3-/4-)) as a redox probe. Under the optimized conditions, a linear relationship between ΔRCT and EA concentration was obtained over the range of 0.16 nM and 16 nM EA, with a detection limit of 0.08 nM. Interference by other selected chemicals with similar structure was negligible. Analytical results of EA spiked into tap water and serum by the sensor suggested the assay could be successfully applied to real sample analysis. With the advantages of high sensitivity, selectivity and simple sensor construction, this method is potentially suitable for the on-site monitoring of EA contamination.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques , Dielectric Spectroscopy , Ethanolamine/analysis
18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(7): 2036-41, 2016 Jul.
Article in Chinese | MEDLINE | ID: mdl-30035872

ABSTRACT

In this research, the terahertz spectra data of the aging wheat processed under manual control environment by ATR accessory were collected. After the data diversity based on the composite score by PCA, the non-destructive identification models of aging wheat were developed by PLS-DA algorithm. The results showed that for the absorption coefficient spectrum, the accuracy of the experimental group, control group of the calibration set and cross validation set were 84.2%, 94.7%, 84.2% and 81.6% respectively, while the accuracy of the experimental group and control group of the external validation set were 73.7% and 100.0% respectively; for the refractive index spectrum, the accuracy of the experimental group, control group of the calibration set and cross validation set were 84.2%, 92.0%, 76.3% and 76.3% respectively, while the accuracy of the experimental group and control group of the external validation set were 84.2% and 89.5% respectively. The research indicates that ATR-THz technology should be of great potentials in the application in the non-destructive identification of aging wheat.

19.
Ecotoxicol Environ Saf ; 122: 214-20, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26264401

ABSTRACT

The accumulation status, sources and phytoavailability of selected metals in greenhouse vegetable production systems in peri-urban areas of Beijing were investigated. The mean concentrations of As, Cd, Cr, Hg and Pb in greenhouse soils were 8.44, 0.25, 69.0, 0.09 and 22.0 mg kg(-1), dw, respectively. According to principal component analysis, As, Cd, Cr and Hg are mainly from anthropogenic source, but Pb is likely from natural source. Metal concentrations in all vegetable samples were decreased in the order of Cr>As>Pb>Cd>Hg. Compared with root and fruit vegetables, leaf vegetables had relatively high concentrations and transfer factors of heavy metals, except for Cd. By including soil pH, OM and greenhouse soil metals, 10 empirical models were derived using stepwise multiple linear regression analysis to predict heavy metal concentrations in the edible parts of different vegetables. Among the different vegetable groups, the highest intakes of metals occurred through consumption of leaf vegetables for the two age groups, except for Cd. The HI value of the studied metals were all below 1, indicating that consumption of vegetables grown in greenhouse soils was of low risk to consumers in our study area.


Subject(s)
Arsenic/analysis , Metals, Heavy/analysis , Soil Pollutants/analysis , Vegetables/chemistry , Arsenic/metabolism , Beijing , Biological Availability , Food Contamination/analysis , Fruit/chemistry , Fruit/metabolism , Metals, Heavy/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Roots/chemistry , Plant Roots/metabolism , Soil Pollutants/metabolism , Vegetables/metabolism
20.
Environ Sci Pollut Res Int ; 21(8): 5547-53, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24407779

ABSTRACT

According to the data from authoritative sources, 1,400 sudden leakage accidents occurred in China during 2006 to 2011 were investigated, in which, 666 accidents were used for statistical characteristic abstracted with no or little damage. The research results were as follows: (1) Time fluctuation: the yearly number of sudden leakage accidents is shown to be decreasing from 2006 to 2010, and a slightly increase in 2011. Sudden leakage accidents occur mainly in summer, and more than half of the accidents occur from May to September. (2) Regional distribution: the accidents are highly concentrated in the coastal area, in which accidents result from small and medium-sized enterprises more easily than that of the larger ones. (3) Pollutants: hazardous chemicals are up to 95 % of sudden leakage accidents. (4) Steps: transportation represents almost half of the accidents, followed by production, usage, storage, and discard. (5) Pollution and casualties: it is easy to cause environmental pollution and casualties. (6) Causes: more than half of the cases were caused by human factor, followed by management reason, and equipment failure. However, sudden chemical leakage may also be caused by high temperature, rain, wet road, and terrain. (7) The results of principal component analysis: five factors are extracted by the principal component analysis, including pollution, casualties, regional distribution, steps, and month. According to the analysis of the accident, the characteristics, causes, and damages of the sudden leakage accident will be investigated. Therefore, advices for prevention and rescue should be acquired.


Subject(s)
Chemical Hazard Release/statistics & numerical data , Environmental Pollution/statistics & numerical data , Hazardous Substances/analysis , China , Humans , Principal Component Analysis , Seasons , Transportation/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...