Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci (China) ; 122: 50-61, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35717090

ABSTRACT

The widespread contamination of water systems with antibiotics and heavy metals has gained much attention. Intimately coupled visible -light-responsive photocatalysis and biodegradation (ICPB) provides a novel approach for removing such mixed pollutants. In ICPB, the photocatalysis products are biodegraded by a protected biofilm, leading to the mineralization of refractory organics. In the present study, the ICPB approach exhibited excellent photocatalytic activity and biodegradation, providing up to ∼1.27 times the degradation rate of sulfamethoxazole (SMX) and 1.16 times the Cr(VI) reduction rate of visible-light-induced photocatalysis . Three-dimensional fluorescence analysis demonstrated the synergistic ICPB effects of photocatalysis and biodegradation for removing SMX and reducing Cr(VI). In addition, the toxicity of the SMX intermediates and Cr(VI) in the ICPB process significantly decreased. The use of MoS2/CoS2 photocatalyst accelerated the separation of electrons and holes, with•O2- and h+ attacking SMX and e- reducing Cr(VI), providing an effective means for enhancing the removal and mineralization of these mixed pollutants via the ICPB technique. The microbial community results demonstrate that bacteria that are conducive to pollutant removal are were enriched by the acclimation and ICPB operation processes, thus significantly improving the performance of the ICPB system.


Subject(s)
Environmental Pollutants , Sulfamethoxazole , Biofilms , Catalysis , Chromium , Titanium
2.
Environ Res ; 195: 110840, 2021 04.
Article in English | MEDLINE | ID: mdl-33587946

ABSTRACT

Intimate coupling of visible-light photocatalysis and biodegradation (ICPB) offers potential for degrading chlorine dioxide bleaching wastewater. In this study, we reported a TiO2-coated sponge biofilm carrier with significant adhesion of TiO2 and the ability to accumulate biomass in its interior. Four mechanisms possibly acting in ICPB were tested separately: adsorption of chlorine dioxide bleaching wastewater to the carrier, photolysis, photocatalysis, and biodegradation by the biofilm inside the carrier. The carrier had an adsorption capacity of 17% and 16% for CODcr and AOX, respectively, in the wastewater. The photodegradation rate of wastewater was very low and could be ignored. Both biodegradation (AOX 30.1%, CODcr 33.8%, DOC 26.2%) and photocatalysis (AOX 65.1%, CODcr 71.2%, DOC 62.3%) possessed a certain degradation efficiency of wastewater. However, the removal rate of AOX, CODcr, and DOC in wastewater treatment by protocol ICPB reached 80.3%, 90.5%, and 86.7%. FT-IR and GC-MS analysis showed that the ICPB system had photocatalytic activity on the surface of the porous carrier in vitro, which could transform organic into small molecules for microbial utilization or complete mineralization. Moreover, the biofilm in the interior of the TiO2-coated sponge carrier could mineralize the photocatalytic products, which enhanced the removal of AOX, CODcr, and DOC by more than 15.2%, 20.0%, and 24.0%, respectively. The biofilm in the carrier of the ICPB system evolved, enriched in Proteobacteria, Chloroflexi, Bacteroidetes, and Actinobacteria, microorganisms known to play active roles in the biodegradation of papermaking wastewater.


Subject(s)
Titanium , Wastewater , Biodegradation, Environmental , Catalysis , Chlorine Compounds , Oxides , Photolysis , Spectroscopy, Fourier Transform Infrared
3.
Int J Phytoremediation ; 22(9): 952-962, 2020.
Article in English | MEDLINE | ID: mdl-32529839

ABSTRACT

Selenium (Se) is an essential micronutrient for humans but is toxic when consumed in excess through the food chain, such as vegetables. Therefore, it is imperative to understand the relationship between the bioavailability of Se in soil and its uptake in edible parts of vegetables. This study investigated Se bioavailability of Brassica juncea in six representative Chinese soils treated with different concentrations of exogenous selenate fertilizer (0-2 mg·kg-1) by comparing diffusive gradients in thin-films (DGT) and chemical extraction methods. The correlation coefficients between the Se uptake by Brassica juncea and soil available Se determined by different extraction methods was as follows: DGT > KCl > Water > EDTA > KH2PO4 > NaHCO3 extractions. In addition, soil properties were correlated between Brassica juncea and soil Se concentrations determined by chemical extraction methods, while the DGT method was independent of soil properties. DGT was more suitable for the measurement of Se thresholds for Udic Ferrisols, Mollisols, Stagnic Anthrosols, Fluviogenic Loamy Paddy soil, Silty Loam soil, and Calcaric Regosols with values of 373.34, 648.68, 436.29, 589.84, 295.35, and 464.95 µg·L-1, respectively. Thus, DGT may be an effective method for the prediction and evaluation of Se bioavailability to Brassica juncea in different soil types.


Subject(s)
Selenium , Soil Pollutants/analysis , Biodegradation, Environmental , Biological Availability , Humans , Mustard Plant , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...