Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Brain Res Bull ; 214: 110989, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38825252

ABSTRACT

Parkinson's disease (PD) is a chronic neurodegenerative disease with unclear pathogenesis that involves neuroinflammation and intestinal microbial dysbiosis. Intercellular adhesion molecule-1 (ICAM-1), an inflammatory marker, participates in neuroinflammation during dopaminergic neuronal damage. However, the explicit mechanisms of action of ICAM-1 in PD have not been elucidated. We established a subacute PD mouse model by the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and observed motor symptoms and gastrointestinal dysfunction in mice. Immunofluorescence was used to examine the survival of dopaminergic neurons, expression of microglial and astrocyte markers, and intestinal tight junction-associated proteins. Then, we use 16 S rRNA sequencing to identify alterations in the microbiota. Our findings revealed that ICAM-1-specific antibody (Ab) treatment relieved behavioural defects, gastrointestinal dysfunction, and dopaminergic neuronal death in MPTP-induced PD mice. Further mechanistic investigations indicated that ICAM-1Ab might suppress neuroinflammation by inhibiting the activation of astrocytes and microglia in the substantia nigra and relieving colon barrier impairment and intestinal inflammation. Furthermore, 16 S rRNA sequencing revealed that the relative abundances of bacterial Firmicutes, Clostridia, and Lachnospiraceae were elevated in the PD mice. However, ICAM-1Ab treatment ameliorated the MPTP-induced disorders in the intestinal microbiota. Collectively, we concluded that the suppressing ICAM-1 might lead to the a significant decrease of inflammation and restore the gut microbial community, thus ameliorating the damage of DA neurons.


Subject(s)
Dopaminergic Neurons , Intercellular Adhesion Molecule-1 , Mice, Inbred C57BL , Animals , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Dopaminergic Neurons/drug effects , Intercellular Adhesion Molecule-1/metabolism , Mice , Male , Disease Models, Animal , Neuroinflammatory Diseases/metabolism , Gastrointestinal Microbiome/physiology , Gastrointestinal Microbiome/drug effects , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Inflammation/metabolism , Substantia Nigra/metabolism , Substantia Nigra/drug effects , Substantia Nigra/pathology , Microglia/metabolism , Astrocytes/metabolism , Astrocytes/drug effects , Parkinsonian Disorders/metabolism , MPTP Poisoning/metabolism , MPTP Poisoning/pathology
2.
J Clin Transl Hepatol ; 12(5): 525-533, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38779519

ABSTRACT

Most patients with hepatocellular carcinoma (HCC) have a poor prognosis. Hepatectomy and local ablation are the main curative treatments for HCC. Nevertheless, the recurrence rate after hepatectomy or ablation is up to 70%, which seriously affects patient prognosis. Several adjuvant therapies have been explored to reduce postoperative recurrence. However, although a variety of adjuvant therapies have been shown to reduce the recurrence rate and improve overall survival, a standard consensus of national HCC guidelines for adjuvant treatment is lacking. Therefore, there are significant differences in the recommendations for adjuvant therapy for HCC between the Eastern and Western guidelines. A variety of adjuvant treatment methods, such as antiviral therapy, transarterial chemoembolization or traditional Chinese medicine, are recommended by the Chinese HCC guidelines. However, Western guidelines make few recommendations other than antiviral therapy. Adjuvant immune checkpoint inhibitors are recommended only in the recently updated American Association for the Study of Liver Diseases guidelines. This review summarized the existing adjuvant therapy options after curative hepatectomy or ablation and discusses several important dilemmas of adjuvant treatments.

3.
Regen Biomater ; 11: rbae008, 2024.
Article in English | MEDLINE | ID: mdl-38545260

ABSTRACT

Collagen, the most abundant structural protein in the human extracellular matrix (ECM), provides essential support for tissues and guides tissue development. Despite its widespread use in tissue engineering, there remains uncertainty regarding the optimal selection of collagen sources. Animal-derived sources pose challenges such as immunogenicity, while the recombinant system is hindered by diminished bioactivity. In this study, we hypothesized that human ECM-like collagen (hCol) could offer an alternative for tissue engineering. In this study, a facile platform was provided for generating hCol derived from mesenchymal stem cells with a hierarchical structure and biochemical properties resembling native collagen. Our results further demonstrated that hCol could facilitate basal biological behaviors of human adipose-derived stem cells, including viability, proliferation, migration and adipocyte-like phenotype. Additionally, it could promote cutaneous wound closure. Due to its high similarity to native collagen and good bioactivity, hCol holds promise as a prospective candidate for in vitro and in vivo applications in tissue engineering.

4.
Aging (Albany NY) ; 16(3): 2542-2562, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38305811

ABSTRACT

The H2A.Z variant histone 1 (H2AZ1) is aberrantly expressed in various tumors, correlating with an unfavorable prognosis. However, its role in hepatocellular carcinoma (HCC) remains unclear. We aimed to elucidate the pathways affected by H2AZ1 and identify promising therapeutic targets for HCC. Following bioinformatic analysis of gene expression and clinical data from The Cancer Genome Atlas and Gene Expression Omnibus database, we found 6,344 dysregulated genes related to H2AZ1 overexpression in HCC tissues (P < 0.05). We performed weighted gene co-expression network analysis to identify the gene module most related to H2AZ1. The H2AZ1-based index was further developed using Cox regression analysis, which revealed that the poor prognosis in the high H2AZ1-based index group could be attributed to elevated tumor stemness (P < 0.05). Moreover, the clinical model showed good prognostic potential (AUC > 0.7). We found that H2AZ1 knockdown led to reduced superoxide dismutase (SOD) activity, elevated malondialdehyde (MDA) levels, and increased apoptosis rate in tumor cells (P < 0.001). Thus, we developed an H2AZ1-based index model with the potential to predict the prognosis of patients with HCC. Our findings provide initial evidence that H2AZ1 overexpression plays a pivotal role in HCC initiation and progression.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/genetics , Cognition , Histones , Liver Neoplasms/genetics , Prognosis
5.
Trials ; 25(1): 25, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38183137

ABSTRACT

BACKGROUND: Entecavir and tenofovir disoproxil fumarate (TDF) are standard first-line treatments to prevent viral reactivation and hepatocellular carcinoma (HCC) in individuals chronically infected with the hepatitis B virus (HBV), but the long-term efficacy of the two drugs remains controversial. Also unclear is whether the drugs are effective at preventing viral reactivation or HCC recurrence after hepatectomy to treat HBV-associated HCC. This trial will compare recurrence-free survival, overall survival, viral indicators and adverse events in the long term between patients with HBV-associated HCC who receive entecavir or TDF after curative resection. METHODS: This study is a randomized, open-label trial. A total of 240 participants will be randomized 1:1 into groups receiving TDF or entecavir monotherapy. The two groups will be compared in terms of recurrence-free and overall survival at 1, 3, and 5 years after surgery; adverse events; virological response; rate of alanine transaminase normalization; and seroreactivity at 24 and 48 weeks after surgery. DISCUSSION: This study will compare long-term survival between patients with HBV-associated HCC who receive TDF or entecavir monotherapy. Numerous outcomes related to prognosis will be analyzed and compared in this study. TRIAL REGISTRATION: ClinicalTrials.gov NCT02650271. Registered on January 7, 2016.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/prevention & control , Carcinoma, Hepatocellular/surgery , Hepatitis B virus , Tenofovir/adverse effects , Liver Neoplasms/prevention & control , Liver Neoplasms/surgery
6.
BJS Open ; 8(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38242573

ABSTRACT

BACKGROUND: The prognostic significance of the aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio in hepatocellular carcinoma remains uncertain. The aim of the current study was to evaluate the association between the AST/ALT ratio and prognosis in patients with hepatocellular carcinoma after hepatectomy, and to explore the role of underlying liver diseases as mediators. METHODS: This retrospective study included patients with hepatocellular carcinoma who underwent hepatectomy between January 2014 and January 2018 at two Chinese hospitals. The maximally selected rank statistic and g-computation approach were used to quantify and visualize the association between the AST/ALT ratio and overall survival or recurrence-free survival. The role of mediators (chronic hepatitis B, hepatic steatosis and liver cirrhosis) was analysed. RESULTS: Among the 1519 patients (mean(s.d.) age at baseline, 50.5(11.3) years), 1309 (86.2%) were male. During a median follow-up of 46.0 months, 514 (33.8%) patients died and 358 (23.6%) patients experienced recurrence. The optimal cut-off value for the AST/ALT ratio was 1.4, and the AST/ALT ratio greater than or equal to 1.4 was independently associated with a 39.0% increased risk of death and a 30.0% increased risk of recurrence (overall survival: hazard ratio (HR), 1.39; 95% c.i. 1.15 to 1.68; recurrence-free survival: HR, 1.30; 95% c.i. 1.12 to 1.52) after adjusting for confounders. Chronic hepatitis B significantly mediated the association of the ratio of AST/ALT with both overall survival and recurrence-free survival (20.3% for overall survival; 20.1% for recurrence-free survival). CONCLUSION: The AST/ALT ratio greater than or equal to 1.4 was associated with shorter overall survival and recurrence-free survival in patients with hepatocellular carcinoma after hepatectomy, and chronic hepatitis B may play a role in their association.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B, Chronic , Liver Neoplasms , Humans , Male , Middle Aged , Female , Prognosis , Alanine Transaminase , Hepatectomy , Retrospective Studies , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/surgery , Aspartate Aminotransferases
7.
Clin. transl. oncol. (Print) ; 25(10): 2960-2971, oct. 2023. graf
Article in English | IBECS | ID: ibc-225077

ABSTRACT

Objective Downregulation of miR-17-5p has been reported in several cancers, but whether and how miR-17-5p is downregulated in hepatocellular carcinoma (HCC) is unknown. Here, we examined whether miR-17-5p is downregulated in HCC and whether that affects expression of its target gene encoding transforming growth factor β receptor 2 (TGFβR). Methods We screened for potential microRNAs (miRNAs) involved in HCC by analyzing published transcriptomes from HCC patients. Expression of miR-17-5p was measured in HCC cell lines and in tissues from HCC patients using quantitative real-time PCR. The in vitro effects of miR-17-5p on HCC cells were assessed by EdU proliferation assay, CCK-8 cell proliferation assay, colony-formation assay, transwell migration/invasion assay, wound healing assay, and flow cytometry. Effects of miR-17-5p were evaluated in vivo using mice with subcutaneous tumors. Effects of the miRNA on the epithelial–mesenchymal transition (EMT) were assessed, while its effects on TGFβR2 expression were analyzed using bioinformatics and a dual luciferase reporter assay. Results Patients with low miR-17-5p expression showed lower rates of overall and recurrence-free survival than patients with high miR-17-5p expression, and multivariate Cox regression identified low miR-17-5p expression as an independent predictor of poor overall survival in HCC patients. In vitro, miR-17-5p significantly inhibited HCC cell proliferation, migration, invasion, and the EMT, while promoting apoptosis. In vivo, it slowed the development of tumors. These protective effects of miR-17-5p were associated with downregulation of TGFβR2. Conclusion The miRNA miR-17-5p can negatively regulate the expression of TGFβR2 and inhibit the EMT, thereby slowing tumor growth in HCC, suggesting a potential therapeutic approach against HCC (AU)


Subject(s)
Animals , Mice , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic
8.
Arch Virol ; 168(10): 260, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37773227

ABSTRACT

In recent years, enterovirus A71 (EV-A71) infection has become a major global public health problem, especially for infants and young children. The results of epidemiological research show that EV-A71 infection can cause acute hand, foot, and mouth disease (HFMD) and complications of the nervous system in severe cases, including aseptic pediatric meningoencephalitis, acute flaccid paralysis, and even death. Many studies have demonstrated that EV-A71 infection may trigger a variety of intercellular and intracellular signaling pathways, which are interconnected to form a network that leads to the innate immune response, immune escape, inflammation, and apoptosis in the host. This article aims to provide an overview of the possible mechanisms underlying infection, signaling pathway activation, the immune response, immune evasion, apoptosis, and the inflammatory response caused by EV-A71 infection and an overview of potential therapeutic strategies against EV-A71 infection to better understand the pathogenesis of EV-A71 and to aid in the development of antiviral drugs and vaccines.


Subject(s)
Enterovirus A, Human , Enterovirus Infections , Enterovirus , Hand, Foot and Mouth Disease , Infant , Child , Humans , Child, Preschool , Hand, Foot and Mouth Disease/therapy , Immunity, Innate , Inflammation , Enterovirus A, Human/genetics
9.
Brain Res Bull ; 202: 110729, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37579888

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease, and communication between the gut and brain (the gut-brain axis) has been found to be essential in behavior and cognitive function. However, the exact mechanisms underlying microbiota dysbiosis in PD progression have not yet been elucidated. Our study aimed to investigate the correlation between gut microbiota disturbances and feces metabolic disorders in PD. We used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce PD models and observed mice's motor symptoms, dopaminergic (DA) neuron death, and gastrointestinal dysfunction. To identify alterations in microbiota and metabolome, feces were collected from mice and analyzed using 16 S ribosomal RNA sequencing feces metabolomics. Pearson analysis was utilized to investigate correlations between the abundances of gut microbiota components and the levels of gut microbiota metabolites, displaying their interaction networks. Our findings revealed a significant increase in Desulfobacterota in the PD mouse model and 151 differentially expressed fecal metabolites between PD and vehicle mice. Moreover, Pearson correlation analysis suggested that the protective factor N-acetyl-L-leucine (NALL) may be associated with neuroinflammation in the striatum and substantia nigra, which also had a negative relationship with the concentration of Desulfobacterota. Additionally, we found that oral administration of NALL alleviated MPTP-induced Motor Impairments and DA neuronal deficits. All in all, we concluded that the decrease of NALL might lead to a significant increase of Desulfobacterota in the MPTP model mouse and subsequently result in the damage of DA neurons via the gut-brain aix pathway.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Animals , Mice , Parkinson Disease/metabolism , Brain-Gut Axis , Dopamine/metabolism , Disease Models, Animal , Mice, Inbred C57BL , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Dopaminergic Neurons/metabolism
10.
Front Cell Dev Biol ; 11: 1194199, 2023.
Article in English | MEDLINE | ID: mdl-37333982

ABSTRACT

Background: Hepatocellular carcinoma (HCC) is among the deadliest cancers worldwide, and advanced HCC is difficult to treat. Identifying specific cell subpopulations in the tumor microenvironment and exploring interactions between the cells and their environment are crucial for understanding the development, prognosis, and treatment of tumors. Methods: In this study, we constructed a tumor ecological landscape of 14 patients with HCC from 43 tumor tissue samples and 14 adjacent control samples. We used bioinformatics analysis to reveal cell subpopulations with potentially specific functions in the tumor microenvironment and to explore the interactions between tumor cells and the tumor microenvironment. Results: Immune cell infiltration was evident in the tumor tissues, and BTG1 + RGS1 + central memory T cells (Tcms) interact with tumor cells through CCL5-SDC4/1 axis. HSPA1B may be associated with remodeling of the tumor ecological niche in HCC. Cancer-associated fibroblasts (CAFs) and macrophages (TAMs) were closely associated with tumor cells. APOC1 + SPP1 + TAM secretes SPP1, which binds to ITGF1 secreted by CAFs to remodel the tumor microenvironment. More interestingly, FAP + CAF interacts with naïve T cells via the CXCL12-CXCR4 axis, which may lead to resistance to immune checkpoint inhibitor therapy. Conclusion: Our study suggests the presence of tumor cells with drug-resistant potential in the HCC microenvironment. Among non-tumor cells, high NDUFA4L2 expression in fibroblasts may promote tumor progression, while high HSPA1B expression in central memory T cells may exert anti-tumor effects. In addition, the CCL5-SDC4/1 interaction between BTG1 + RGS1 + Tcms and tumor cells may promote tumor progression. Focusing on the roles of CAFs and TAMs, which are closely related to tumor cells, in tumors would be beneficial to the progress of systemic therapy research.

11.
Clin Transl Oncol ; 25(10): 2960-2971, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37024636

ABSTRACT

OBJECTIVE: Downregulation of miR-17-5p has been reported in several cancers, but whether and how miR-17-5p is downregulated in hepatocellular carcinoma (HCC) is unknown. Here, we examined whether miR-17-5p is downregulated in HCC and whether that affects expression of its target gene encoding transforming growth factor ß receptor 2 (TGFßR). METHODS: We screened for potential microRNAs (miRNAs) involved in HCC by analyzing published transcriptomes from HCC patients. Expression of miR-17-5p was measured in HCC cell lines and in tissues from HCC patients using quantitative real-time PCR. The in vitro effects of miR-17-5p on HCC cells were assessed by EdU proliferation assay, CCK-8 cell proliferation assay, colony-formation assay, transwell migration/invasion assay, wound healing assay, and flow cytometry. Effects of miR-17-5p were evaluated in vivo using mice with subcutaneous tumors. Effects of the miRNA on the epithelial-mesenchymal transition (EMT) were assessed, while its effects on TGFßR2 expression were analyzed using bioinformatics and a dual luciferase reporter assay. RESULTS: Patients with low miR-17-5p expression showed lower rates of overall and recurrence-free survival than patients with high miR-17-5p expression, and multivariate Cox regression identified low miR-17-5p expression as an independent predictor of poor overall survival in HCC patients. In vitro, miR-17-5p significantly inhibited HCC cell proliferation, migration, invasion, and the EMT, while promoting apoptosis. In vivo, it slowed the development of tumors. These protective effects of miR-17-5p were associated with downregulation of TGFßR2. CONCLUSION: The miRNA miR-17-5p can negatively regulate the expression of TGFßR2 and inhibit the EMT, thereby slowing tumor growth in HCC, suggesting a potential therapeutic approach against HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Animals , Mice , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism
12.
Biomed Res Int ; 2023: 6517963, 2023.
Article in English | MEDLINE | ID: mdl-36755690

ABSTRACT

Purpose: Hepatocellular carcinoma (HCC) is a disease with great heterogeneity and a high mortality rate. It is crucial to identify reliable biomarkers for diagnosis, prognosis, and treatment to improve clinical outcomes in patients with HCC. Alpha-fetoprotein (AFP) is not only a widely used biomarker in clinical practice but also plays a complicated role in HCC, and it has recently been considered to be related to immunotherapy. MicroRNAs (miRNAs) are regarded as key regulators and promising biomarkers of HCC. We investigated the role of an AFP-related miRNA, miR-135b-5p, in HCC progression. Methods: Identification of miR-135b-5p was performed based on a cohort of 65 HCC cases and the liver hepatocellular carcinoma cohort of The Cancer Genome Atlas (Asian people only). A combination of whole-transcriptome sequencing and high-dimensional proteomic technologies was used to study the role of miR-135b-5p in HCC. Results: Upregulation of miR-135b-5p was detected in patients with HCC with high serum AFP levels (AFP > 400 ng/ml). Elevated miR-135b-5p expression was associated with adverse prognosis. We also identified the relevance between high miR-135b-5p expression and tumor-related pathological characteristics, such as Edmondson grade and vascular invasion. We revealed tyrosine kinase nonreceptor 1 as a potential target of miR-135b-5p. Additionally, the transcriptional start site of miR-135b-5p had potential binding sites for SRY-box transcription factor 9, and the stemness properties of tumor cells were more remarkable in HCC with the upregulation of miR-135b-5p. The molecular characterization of the miR-135b-5p-high group was similar to that of the HCC subclasses containing moderately and poorly differentiated tumors. Finally, gene signatures associated with improved clinical outcomes in immune checkpoint inhibitor therapy were upregulated in the miR-135b-5p-high group. Conclusion: miR-135b-5p could be a biomarker for predicting the prognosis and antiprogrammed cell death protein 1 monotherapy response in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , alpha-Fetoproteins/genetics , alpha-Fetoproteins/metabolism , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/pathology , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , MicroRNAs/metabolism , Proteomics , Transcriptome
13.
J Clin Transl Res ; 8(6): 470-475, 2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36457899

ABSTRACT

Background and Aim: A recent outbreak of acute severe hepatitis of unknown etiology (ASHep-UA) among children 16 years old and younger has aroused global concern. Initially reported in central Scotland, the disease has been notified in 35 countries and linked to 22 deaths as of 25 September 2022. This review aimed to provide current knowledge about the outbreak of ASHep-UA. Methods and Results: The websites of the World Health Organization, the UK Health Security Agency, the European Center for Disease Prevention and Control, the Centers for Disease Control and Prevention, and the PubMed database were searched, based on the search term "acute severe hepatitis of unknown etiology." The corresponding reports or literature previously released by the mentioned websites and database were integrated to obtain current information about ASHep-UA. Conclusion: Even though the potential relevance between ASHep-UA and adenovirus, adeno-associated virus 2, and human herpes viruses was revealed, the etiology of ASHep-UA is still unknown. More effort should be made to explore whether ASHep-UA is caused by a novel virus or other environmental factors, to generate appropriate treatment strategies. Relevance to Patients: ASHep-UA has aroused global concern recently, which may lead to adverse outcomes such as liver transplants and death. The present review shares current development and information about the outbreak of acute severe hepatitis of unknown origin among children.

14.
Front Genet ; 13: 1057302, 2022.
Article in English | MEDLINE | ID: mdl-36568387

ABSTRACT

Background: The tumor suppressor gene TP53 is frequently mutated or inactivated in bladder cancer (BLCA), which is implicated in the pathogenesis of tumor. However, the cellular mechanisms of TP53 mutations are complicated, yet well-defined, but their clinical prognostic value in the management of BLCA remains controversial. This study aimed to explore the role of TP53 mutation in regulating the tumor microenvironment (TME), elucidate the effects of TP53 activity on BLCA prognosis and immunotherapy response. Methods: A TP53-related signature based on TP53-induced and TP53-repressed genes was used to construct a TP53 activity-related score and classifier. The abundance of different immune cell types was determined using CIBERSORT to estimate immune cell infiltration. Moreover, the heterogeneity of the tumor immune microenvironment between the high and low TP53 score groups was further evaluated using single-cell mass cytometry (CyTOF) and imaging mass cytometry (IMC). Moreover, pathway enrichment analysis was performed to explore the differential biological functions between tumor epithelial cells with high and low TP53 activity scores. Finally, the receptor-ligand interactions between immune cells and tumor epithelial cells harboring distinct TP53 activity were analyzed by single-cell RNA-sequencing. Results: The TP53 activity-related gene signature differentiated well between TP53 functional retention and inactivation in BLCA. BLCA patients with low TP53 scores had worse survival prognosis, more TP53 mutations, higher grade, and stronger lymph node metastasis than those with high TP53 scores. Additionally, CyTOF and IMC analyses revealed that BLCA patients with low TP53 scores exhibited a potent immunosuppressive TME. Consistently, single-cell sequencing results showed that tumor epithelial cells with low TP53 scores were significantly associated with high cell proliferation and stemness abilities and strongly interacted with immunosuppressive receptor-ligand pairs. Conclusion: BLCA patients with low TP53 scores have a worse prognosis and a more immunosuppressive TME. This TP53 activity-related signature can serve as a potential prognostic signature for predicting the immune response, which may facilitate the development of new strategies for immunotherapy in BLCA.

16.
Cancers (Basel) ; 13(21)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34771607

ABSTRACT

Muscle invasive bladder cancer (MIBC) is a malignancy with considerable heterogeneity. The MIBC tumor microenvironment (TME) is highly complex, comprising diverse phenotypes and spatial architectures. The complexity of the MIBC TME must be characterized to provide potential targets for precision therapy. Herein, an integrated combination of mass cytometry and imaging mass cytometry was used to analyze tumor cells, immune cells, and TME spatial characteristics of 44 MIBC patients. We detected tumor and immune cell clusters with abnormal phenotypes. In particular, we identified a previously overlooked cancer stem-like cell cluster (ALDH+PD-L1+ER-ß-) that was strongly associated with poor prognosis. We elucidated the different spatial architectures of immune cells (excluded, infiltrated, and deserted) and tumor-associated collagens (curved, stretched, directionally distributed, and chaotic) in the MIBC TME. The present study is the first to provide in-depth insight into the complexity of the MIBC TME at the single-cell level. Our results will improve the general understanding of the heterogeneous characteristics of MIBC, potentially facilitating patient stratification and personalized therapy.

17.
Front Genet ; 12: 695662, 2021.
Article in English | MEDLINE | ID: mdl-34484294

ABSTRACT

Muscle invasive bladder cancer (MIBC) is a heterogeneous disease with a high recurrence rate and poor clinical outcomes. Molecular subtype provides a new framework for the study of MIBC heterogeneity. Clinically, MIBC can be classified as basal and luminal subtypes; they display different clinical and pathological characteristics, but the molecular mechanism is still unclear. Lipidomic and metabolomic molecules have recently been considered to play an important role in the genesis and development of tumors, especially as potential biomarkers. Their different expression profiles in basal and luminal subtypes provide clues for the molecular mechanism of basal and luminal subtypes and the discovery of new biomarkers. Herein, we stratified MIBC patients into basal and luminal subtypes using a MIBC classifier based on transcriptome expression profiles. We qualitatively and quantitatively analyzed the lipids and metabolites of basal and luminal MIBC subtypes and identified their differential lipid and metabolite profiles. Our results suggest that free fatty acids (FFAs) and sulfatides (SLs), which are closely associated with immune and stromal cell types, can contribute to the diagnosis of basal and luminal subtypes of MIBC. Moreover, we showed that glycerophosphocholine (GCP)/imidazoles and nucleosides/imidazoles ratios can accurately distinguish the basal and luminal tumors. Overall, by integrating transcriptomic, lipidomic, and metabolomic data, our study reveals specific biomarkers to differentially diagnose basal and luminal MIBC subtypes and may provide a basis for precision therapy of MIBC.

18.
Front Genet ; 12: 695597, 2021.
Article in English | MEDLINE | ID: mdl-34276798

ABSTRACT

Small nuclear RNA is a class of non-coding RNA that widely exist in the nucleus of eukaryotes. Accumulated evidences have shown that small nuclear RNAs are associated with the regulation of gene expression in various tumor types. To explore the gene expression changes and its potential effects mediated by U11 snRNA in bladder cancer cells, U11 snRNA knockout and overexpressed cell lines were constructed and further used to analyze the gene expression changes by RNA sequencing. The differentially expressed genes were found to be mainly enriched in tumor-related pathways both in the U11 knockout and overexpression cell lines, such as NF-kappa B signaling pathway, bladder cancer and PI3K-Akt signaling pathway. Furthermore, alternative splicing events were proposed to participate in the potential regulatory mechanism induced by the U11 knockout or overexpression. In conclusion, U11 may be involved in the regulation of gene expression in bladder cancer cells, which may provide a potentially new biomarker for clinical diagnosis and treatment of bladder cancer.

19.
J Clin Lab Anal ; 35(5): e23754, 2021 May.
Article in English | MEDLINE | ID: mdl-33813769

ABSTRACT

BACKGROUND: Muscle-invasive bladder cancer (MIBC) is a heterogeneous disease with varying clinical courses and responses to treatment. To improve the prognosis of patients, it is necessary to understand such heterogeneity. METHODS: We used single-sample gene set enrichment analysis to classify 35 MIBC cases into immunity-high and immunity-low groups. Bioinformatics analyses were conducted to compare the differences between these groups. Eventually, single-cell mass cytometry (CyTOF) was used to compare the characteristics of the immune microenvironment between the patients in the two groups. RESULTS: Compared with patients in the immunity-low group, patients in the immunity-high group had a higher number of tumor-infiltrating immune cells and greater enrichment of gene sets associated with antitumor immune activity. Furthermore, positive immune response-related pathways were more enriched in the immunity-high group. We identified 26 immune cell subsets, including cytotoxic T cells (Tcs), helper T cells (Ths), regulatory T cells (Tregs), B cells, macrophages, natural killer (NK) cells, and dendritic cells (DCs) using CyTOF. Furthermore, there was a higher proportion of CD45+ lymphocytes and enrichment of one Tc subset in the immunity-high group. Additionally, M2 macrophages were highly enriched in the immunity-low group. Finally, there was higher expression of PD-1 and Tim-3 on Tregs as well as a higher proportion of PD-1+ Tregs in the immunity-low group than in the immunity-high group. CONCLUSION: In summary, the immune microenvironments of the immunity-high and immunity-low groups of patients with MIBC are heterogeneous. Specifically, immune suppression was observed in the immune microenvironment of the patients in the immunity-low group.


Subject(s)
Flow Cytometry , Muscles/pathology , Tumor Microenvironment/immunology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/immunology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Immunophenotyping , Immunosuppression Therapy , Neoplasm Invasiveness , Tumor Microenvironment/genetics
20.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(7): 1961-6, 2015 Jul.
Article in Chinese | MEDLINE | ID: mdl-26717760

ABSTRACT

Leaf water content is an important factor affecting tree spectral characteristics. So Exploring the leaf spectral characteristics change rule of the same tree under the condition of different leaf water content and the spectral differences of different tree leaves under the condition of the same leaf water content are not only the keys of hyperspectral vegetation remote sensing information identification but also the theoretical support of research on vegetation spectrum change as the differences in leaf water content. The spectrometer was used to observe six species of tree leaves, and the reflectivity and first order differential spectrum of different leaf water content were obtained. Then, the spectral characteristics of each tree species leaves under the condition of different leaf water content were analyzed, and the spectral differences of different tree species leaves under the condition of the same leaf water content were compared to explore possible bands of the leaf water content identification by hyperspectral remote sensing. Results show that the spectra of each tree leaf have changed a lot with the change of the leaf water content, but the change laws are different. Leaf spectral of different tree species has lager differences in some wavelength range under the condition of same leaf water content, and it provides some possibility for high precision identification of tree species.


Subject(s)
Plant Leaves , Spectrum Analysis , Trees , Water , Analysis of Variance , Remote Sensing Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...