Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 13(32): 9295-9304, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36093024

ABSTRACT

Recently proposed bimetallic octahedral Pt-Ni electrocatalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cell (PEMFC) cathodes suffer from particle instabilities in the form of Ni corrosion and shape degradation. Advanced trimetallic Pt-based electrocatalysts have contributed to their catalytic performance and stability. In this work, we propose and analyse a novel quaternary octahedral (oh-)Pt nanoalloy concept with two distinct metals serving as stabilizing surface dopants. An efficient solvothermal one-pot strategy was developed for the preparation of shape-controlled oh-PtNi catalysts doped with Rh and Mo in its surface. The as-prepared quaternary octahedral PtNi(RhMo) catalysts showed exceptionally high ORR performance accompanied by improved activity and shape integrity after stability tests compared to previously reported bi- and tri-metallic systems. Synthesis, performance characteristics and degradation behaviour are investigated targeting deeper understanding for catalyst system improvement strategies. A number of different operando and on-line analysis techniques were employed to monitor the structural and elemental evolution, including identical location scanning transmission electron microscopy and energy dispersive X-ray analysis (IL-STEM-EDX), operando wide angle X-ray spectroscopy (WAXS), and on-line scanning flow cell inductively coupled plasma mass spectrometry (SFC-ICP-MS). Our studies show that doping PtNi octahedral catalysts with small amounts of Rh and Mo suppresses detrimental Pt diffusion and thus offers an attractive new family of shaped Pt alloy catalysts for deployment in PEMFC cathode layers.

2.
Angew Chem Int Ed Engl ; 60(26): 14446-14457, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33844879

ABSTRACT

Layered double hydroxides (LDHs) are among the most active and studied catalysts for the oxygen evolution reaction (OER) in alkaline electrolytes. However, previous studies have generally either focused on a small number of LDHs, applied synthetic routes with limited structural control, or used non-intrinsic activity metrics, thus hampering the construction of consistent structure-activity-relations. Herein, by employing new individually developed synthesis strategies with atomic structural control, we obtained a broad series of crystalline α-MA (II)MB (III) LDH and ß-MA (OH)2 electrocatalysts (MA =Ni, Co, and MB =Co, Fe, Mn). We further derived their intrinsic activity through electrochemical active surface area normalization, yielding the trend NiFe LDH > CoFe LDH > Fe-free Co-containing catalysts > Fe-Co-free Ni-based catalysts. Our theoretical reactivity analysis revealed that these intrinsic activity trends originate from the dual-metal-site nature of the reaction centers, which lead to composition-dependent synergies and diverse scaling relationships that may be used to design catalysts with improved performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...